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INTRODUCTION

When the flow of a fluid is numerically simulated in a region with
a complicated geometry, the theoretical basis for the simulation is a
combination of numerical, fluid dynamic, and geometric analyses. In
turbomachinery problems, the level of geometric complexity is usually
considerable. With increasing amounts of available computational power,
with computational fluid dynamic methods reaching a certain level of
maturity, and with geometric methods in a fairly primitive state, there
is a need to develop geometric analyses in order to consider applications
to problems with practical geometries. As a consequence, the emphasis
here shall be on geometric methods in computational fluid dynamics.
Throughout the development, a general viewpoint shall be adopted so that
geometric computational fluid dynamic algorithms can be formulated in a
manner which is applicable to broad classes of problems. The geometric
description of the flow regions will be'given by coordinate generation
techniques. To express the equations of motion and the bﬁundary condi-
tions relative to a coordinate system, fhe methods of tensor analysis
must be considered. After a'sufficient amount of tensor analysis is
presented, general forms for the equations of motion and the boundary
conditions are developed. Moreover, with the consequent increase in the
possible number of terms in the equations to be solved, numerical methods
are considered in a manner for which large numbers of terms can be
handled in a systematic manner without the need to explicitly write or

code each term on a term by term basis.
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GEOMETRIC METHODS IN COMPUTATIONAL FLUID DYNAMICS

Peter R. Eiseman

Tnatitute fon Computer Applications in Science and Engineering
and
Universities Space Research Association

ABSTRACT

General methods are presented for the constructionrof geometric
computational fluid dynamic algorithms that can be applied to simulate
a wide variety of flow fields in various nontrivial regions. Particular
emphasis is given to the highly constrained geometric regions which
readily occur in turbomachinery applications. The analysis includes
basic developments with tensors, various forms for the equations of
motion, generalized numerical methods and boundary conditioms, and
various methods for coordinate generation to meet the strong geometric
constraints of turbomachines. Coordinate generation is considered in
enough generality to yield mesh descriptions from one or more trans-

formations that are smoothly joined together to form a composite mesh.

: 1

This paper was prepared for the short course on "Shock-Boundary Layer
Interaction in Turbomachines™ at the’ von Karman Institute for Fluid Dynamics
in June 1980 and in compliance with AGARD Comtract No. AGARD/OTAN/DPP/80/11007.
This paper pertains to the part of the course entitled "Theoretical Solutions
to the Navier-Stokes Equations for Tramsonic Flow." Partial support was
supplied under NASA Contracts No. NAS3-22117 and No. NAS1-15810.
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BASIS TENSOR ANALYSIS

The geometric complexity of the various regions within a typical
turbomachine is a major factor in the fluid dynamic analysis of any
particular region. Although the various regions are parts of Eucli-
dian space, the complexity is caused by region boundaries. To mathe-
matically describe and anlyze flows through such regions, the applica-
tion of coordinate transformations is a very effective method. Since
the physical laws governing fluid flow are independent of any particu-
lar coordinate transformation, the mathematical description must also
be coordinate invariant. Tensor analysis, however, is a study of the
pertinent coordinate invariant quantities. As a result, the mathe~
matical description will be expressed in a tensor form. Since parts of
Euclidian space are bounded in some complicated fashion, temsor analysis

for our purpose shall be resticted to Euclidian space.

Preliminaries

To start our examination of tensor analysis, let Rn denote an
n-dimension Euclidian space, let ﬁl, ﬁz...,ﬁn denote unit vectors
along the axes of a fixed Cartesian coordinate system omn Rn, and let
; be a position vector in R®. Since R® 1is a vector gspace, the posi-

tion-vector can be expressed by the linear combination

x= xiﬁi (1)

where the Einstein summation convention has been employed. In particular,
when an index appears as both a subscript and a superscript it is assumed
to be sumed from 1 to n. This convention shall also be assumed with-

out any more mention in the subsequent discussion. In Eq. 1, the = ~



coefficients xi are the Cartesian coordinates of the point ; which

is commonly denoted by (xl,xz,...,x“). A two-dimensional illustration
of Eq. 1 is given in Figure 1 where the geometric relatiomship is clearly
displayed. Relative to the fixed Cartesian coordinates, let yl,yz,...yn
be a system of curvilinear coordinates. The relationship with the fixed

Cartesian coordinates is then given in the form
> i ~
X = x (yl,...yn)u1 (2)

by definition of the functions on the right hand side. When all except
one of the curvilinear coordinates are fixed, Eq. 2 defines a coordinate

curve with the non-fixed curvilinear coordinate as a parameterization.

e
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Figure 1. The Cartesian Decomposition of the Position Vector in Two-Dimensions
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Upon differentiation with respect to the non-fixed coordinate, a natural
tangent vector to the coordinate curve is obtained. Since partial deriva-
tives are taken by holding fixed all except the variable to be differen-
tiated, the natural tangent vectors to coordinate curves are just partial

derivatives of the position vector given in Eq. 2. In symbols, the natural

tangent vector ;3 to coordinate curves in the curvilinear variable yj
is given by
S - =, (3)
ay?

Since the natural tangent vector of Eq. 3 is defined at every point in the
domain of the coordinate transformation, it is a vector field as opposed

to a single vector. In parallel with Figure 1, a two~dimensional illustra-
tion of the natural tangent vectors at a point X 1is depicted in Figure 2.
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Figure 2. The Natural Tangent Vectors at a Point in Two-Dimensions.



When the transformation of Eq. 2 is inserted into expression for the

natural tangent vector field of Eq. 3, we obtain

i
9 i, X A
o) (xui)-B:j 8 (4)

>
ej =
where the last equality is valid because derivatives of the constant
vectors ﬁi vanish. Altermatively, the comnstancy of each ﬁi implies
from Eq. 1 that ﬁi - 3;/3::i which, in turn, leads to Eq. 4 when it is
inserted into a chain rule expansion of Eq. 3. To interpret Eq. 4, a
Cartesian basls of the vector space R® is transformed into the set of
natural tangent vectors by a Jacobian transformation. If the transforma-
tion is nonsingular, then the natural tangent vectors are also a basis of
R:. In particular, the Jacobian

axi‘ .
J = det (———) » (5)

ay)

must then be non-zero. in the two-dimensional illustration of Figure 2,
the Jacobian is non-zero at the point ; because the natural tangent
vectors displayed there are clearly a basis of Rz. Had ;1 and ;2
been pointing in the s;me direction or ha& either one of them vanished,
then the transformation (Eq. 4) would have been singular and Jacobian
would have vanished.- As a consequence, the pointwise coordinate'trans-
formation of Eq. 2 would have mapped a one or two dimensional object into
one of les;errdimenaion. A common example is given by the polar singulari-
ty where the one-dimensional segment corresponding zero radius is mapped
onto the origin which is zero-dimensional. In general, a singularity is
associated with a degeneracy in dimensionality of the pointwise transfor-

mation of Eq. 2. When the transformation is nonsingular, there is no loss

e



in dimensionality and the inverse transformation

7=y, 6 (6)

is valid in a neighborhood of the nonsingular points by virtue of the in-

verse function theorem.

The Metric

Angles between coordinate curves and rates of change along coordinate
curves can be measured with dot products of the natural tangent vector
fields of Eq. 4. For notational convenience, let the dot products be -

represented by

(7)

which is symmetric in the indices 1 and j each of whicg vary from 1
to n. The similar set of dot products of unit Cartesian vectors ﬁi is,
however, of a special form: it is given by ﬁk' ﬁz = le where le is
the Kronecker delta symbol which 1s'unity if the indices are equal and
vanishes otherwise. When Eq. 4 is inserted into Eq. 7 and when the
special form of the Cartesian dot produ;ts is applied, the dot products of

the natural tangent vectors are given by
. .(ai»).(ﬁﬁ'
13 3y1“k ayd 2

2 : (8)



where the sum over k after the last equality is a slight abuse of the
summation convention since two superscripts are summed rather than a sub-
script-superscript pair. From Eq. 8 with 1 = j, the magnitude of the

k|

natural tangent vector field to coordinate curves in the y- variable

(Eq. 4) becomes

/g?; -[(é‘i)2 + (a_xz)z + ...+ (3—"31-)2]!t , (9)
3y’ ayd 3

which can also be recognized as the derivative of coordinate curve arc

length with respect to the curQe parameterization yj. Since the index

j appears on both sides of the equation, note that its repetition which

is not summed does not conflict with a summation convention. With the

magnitudes (Eq. 9) established for the natural tangent vector fields

(Eq. 4), unit tangent vector fields cam be defined along the coordinate

curves provided that the magnitudes do not vanish and can consequently be

used for the respective normalizations. When dot products of the unit

vector fields obtained by the normalizationms are computed, angles between

coordinate curves can be determined. For the coordinate curves in the

yi and y:l variables, respectively, the dot product which determines the

angle 913 between them 1is given by

+ -+

e e 8.1 |
cos 8, = ty./—1) - —L | (10)

S3) \V/o /811853

A two-dimensional illustration of the angle 912 is displayed in Figure 2.
Unlike the higher dimensional cases, 912 - 621 is the only angle that

needs to be determined there. In the illustration, the magnitudes “811’

V8,2 and the angle €, are enough to determine the area of the

-
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parallelogram defined by Zl, :é and appropriate parallel translates.
The area, /Eil[lgazlsin 612]], upon substitution from Eq. 10, reducés
to JE- where g 1s the determinant of the matrix (gij)' Intuitively,
the area should be equal to the Jacobian (Eq. 5), and consequently, the
relationship g = J2 should be valid. From Eq. 8, the validity can, in
fact, be established not only for two-dimensions but more generally for
any number of dimensions. Specificially, if A denotes the matrix from
the Jacobian transformation of Eq. 4 and if A is the transpose of A,
then the determinant of Eq. 8 becomes

g = det(AA) = (det A%)(det A) = (det a)2 = 2, (1)

from the determinant product rule and invariance with respect to transpose.
The singularity or nonsingularity of a coordinate transformation can then
clearly be considered from the matrix of dot products or ftom the Jacobiﬁn
transformation.

With the determination of coordinate curve arc length from the dot
products given in Eq. 9, a reasonable expectation‘is to determine the arc
iength of an arbitrary curve from the full set of dot products given in
Eq. 8. Between two values t = a and t s b of a parameterization t
for an arbitrary curve x= ;(;(t)), the curve arc length can be approxi-
mated by the linear distance between corresponding points on the curve.
When a given level of accuracy 1is specified, it can be obtained for choices
of a and b that are sufficiently close together. Moreover, in the
limit towards differential sizes the appoximation converges to am exact
equality, assuming that the curve is sﬁfficiently smooth, The differential

element of arc length ds is then given by



(ds) = dx + dx . (13)

From a chain rule expansion, the differential of the Cartesian vector

field x of Eq. 2 becomes
> :
dx = Foay” = edy (14)

where the natural tangent vector fields (Eq. 3) were inserted for the last
equality. Upon substitution, the quadradic expression for the arc length

differential becomes
@? = Gyt - @arh) = @Syl < g ety as)

where the second equality results from doﬁ product linearity; thertﬂird,
from Eq. 7. Consequently, the rule for distance measurements with respect
to curvilinear variables is given entirely by the set of all dot products
between the natural tangent vector fields to coordinate curves (Eq. 7).
The rule is referred to as a metric and the dot products gij are then
called metric coefficients [1]. When the rule is applied to the earlier
case of arc length along a coordinate curve in the yj variable, the
result corresponds to the earlier statement following Eq. 9. To obtain

a specific coordinate curve in jj, the remaining variables yk for

k ¥ J wmust be constants which, in turn, leads to the vanishing differen-
tials: dyk =0 for k¥ j. Upon substitution, Eq. 15 reduces to the
unsummed expressibn (ds)2 = gij(dyj)z, establishing the expected corres-
pondence. In Figure 3, an application of the metric is giveh for an

arbitrary curve in two-dimensions where a differential element of arc leagth

My



2
y - Coordinate «—— Arbitrary Curve

12

yl - Coordinate

Figure 3. Differential Element of Arc Length for an Arbitrary Curve in
Two-Dimensions.

15 to be computed betweemn A and C along the arbitrary curve. Om a
differential level, all curves can be represented by the straight line
segments, as illustrated. The distances along the coordinate curves in

yl and y2 variables are given by /81—1 dyl and /32—2 c:ly2 respectively
along line segments AB and BC. From the angle 912, distances on the
legs of the right triangle ADC can be obtained. By the Pythagorean theorém,

the arc length expression is then



~10-

_ , .
(ds)2 = [/gll dy1 + (/322 dy“)cos 8, ]2*-[(/822 dyz)sin 612]2

1.2, ,—— 1,2 2,2
(dy )" + 2/g18,, (cos B;))dy dy” + gy, (dy™)

811
(16)

1,2 1,2 2,2
811(dy )7 + 2 8),dy dy” + 8y, (dy)

8ijdyidyj s

which as expected matches with the general form. The third equality in
Eq. 16 was the result of a direct substitution from Eq. 10; the last,
symmetry in the indices of the metric coefficilents.
When the transformation of coordinates (Eq. 2) 1s nonsingular at a
point, the natural tangent vectors (Eq. 3) form a basis of the vector space
+2 be!

Rn. A new basis Zl, € ,ee.8 can be then be obtained by enforcement

of the orthogonality relationship

an
for 1 <1, J < n. The symbol 8; is a Kronecker delta which is equal to
the earlier Kronecker delta 513’ it i{s unity wvhen 1 = j and vanishes
otherwise. A two-dimensional illustration of the new (dual) basis is
given in Figure 4. The orthogonality properties are geometrically viewed
as the construction of vector fields which are perpendicular to coordinate
curves. In the example, 31 is perpendicular to every yz- coordinate
curve at every point along each one. Similarly 32 is perpendicular to
the yl - coordinate curve, as illustrated. Moreoever, in n-dimensions

;i is perpendicular to all coordinate surfaces corresponding to constant
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o+

y2 - Coordinate

o+

yl -~ Coordinate

Figure 4. Dual Basis to the Natural Tangent Vectors in Two Dimensioms

values of yi at all points along those surfaces. Since :i belongs

to Rn, it can be expressed as a linear combination of tﬁe natural tangent
vectors in the form :i - aikzk for some coefficients aik. When the
linear combination is inserted into Eq. 17 and subsequently when Eq. 7 is
applied, we obtain aikgkj = 6; which indicates that the matrix (aik)

is just the inverse of the matrix of metrics (g ij) which exists since
g= J2 by Eq. 11 and J is nonvanishing by the nonsingularity of the
transformation. For uniformity in the notation for metrics, the elements
aik of the inverse matrix shall be denoted by gik. With the uniform
metric notation, the transformation into the superscript basis is given by

;i = 31323 s (18a)
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>

for { =1,2,...,n. By matrix multiplication gkizi = gkigijgj = 61;3 =e

which is
[ gkizi . (18b)

In summary, transformations between gsubscripted and superscripted bases
of R® are obtained by using the form of the metric that is compatible
with the Einstein summation convention of summing subscript-superscript
pairs of indices. Sincé both subscripted and superscripted vectors are

bases of Rn, any vector ; can be expressed as

»> > >i (19)

where the coefficients are designated with superscripts and subscripts
in correspondence with the summation convention. Upon a direct substi-
tution from Eq. 18 and an application of linear independence, the coeffi-

cients of Eq. 19 are related by

K

vy " By | (20a)
and

v = 3H'vi . (20b)

Consequently, the metric can be used to raise and lower the indices of
either the vector bases or their coefficients by adhering to the summation

convention. As a matter of termonology, subscripted quantities, have been

called covariant quantities: supefscripted ones, contravariant [2].

R B
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When the dot products of the superscripted vectors are considered,
a result similar to the metric expression in Eq. 7 could be anticipated.
To form a superscripted version, the dot product of Ek with both sides
of Eq. 18a is taken. The right hand side 1s given by
gij;k . Zj - 3116§ - gik where the definition of Eq. 17 has been applied.
Thus, in parallel with the dot product representation of gij’ the inverse

to the matrix of metrics has elements given in the dot product form
= v e , (21)

for 1,j = 1,2,...,n. Moreover, {f A denotes the Jacobian transforma-
tion of Eq. 4 with transpose At and inverse A—l, then for nonsingular

A, the inverse metrics are given by
@D = @ = @ = atah T = At ht . (22)

When this matrix equation is converted into components, the inverse metric

assumes the form

i
Bij - .31; _ai , (23)
ax 9x

which appears like an expanded form of Eq. 21. Upon substitution of both

Eq. 23 and Eq. 4 into Eq. 18a, we obtain

’ (24)
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after some simplifications. The result is a Cartesian expansion of Zi

-+
e

which is a parallel to the expansion of 4 in Eq. 4 and which establishes

the connection between Eqs. 21 and 23.

Tensor Products

With the basis of natural tangents :1, Zé,...é; and its dual

21,22,...,2“ with respect to dot products (Eq. 17), higher order bases of
higher order spaces can be obtained from tensor products of the given bases.
The formation of a higher order space from m existing spaces W,, Wz,...,WQ
i1s usually taken to be a Cartesian product Wl X Wz X 545 X Wm where points
are given by ordered m—tuples of tﬁe form (wl,wz,...wm) for W in W§

and k = 1,2,...,m. The Cartesian product is satisfactory when no algebraic
properties are needed such as when the spaces Wi are just sets of points.
However, when each Wi is a vector space, a product which is also a vector
space is usually needed. The tensor product fulfills this need. It is
defined by the enforcement of linearity in each position of the Cartesian
m—-tuples so that the new vectors (i.e., tensors) can be added, substracted,
and scaled in the same manner as the original vectors in each Wi. To dis-
tinguish the tensor product from the Cartesian product, the Cartesian x
shall be replaced by ® . The tensor product of the spaces Wi is then
denoted by W, ® W, ® ... ® W, with elements ;1 ® ;2 ® ... ® ;m
which for uniformity of notation also have the symbol & . For ;k in Wk

and a scalar ays the relationship that defines the temsor product is given
by

>

1© @V ® (W+T) @3, ©..0 (25)

€+

-ak[:lée'...@;m}[zl ©.0%,0% 04, ©...0 ;m].

Ny
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When the Wi are taken to be spaces of vector fields rather than vector
spaces, the only difference is that the scalars 'ak of Eq. 25 are func-
tions rather than real numbers since vector fields are just an assignment
of vectors at all points in the space over which they are defined. The
functions a, are given over the space of vector field definition which
if collapsed to a point would be a real number and similarly the vector
fields would reduce to vectors. Now let each Wi be the space of
natural tangent vector fields for i = 1,2,...,p and let each W; be
the dual space for j = 1,2,...,q. Then elements a of the tensor pro-
duct space W, ®...0 Wp ® W; ®...8 W: can be expressed in the

form

a=a

i,...1
1 Pj j’é‘i ®...0 3, ®2jl ®...0 Zj“ ,  (26)
“1°"Yq 71 P

|
which 183 an expansion in the tensor product basis Zi ® ...0 e L
i .lli 1
pj y° The Einstein summation convention for
1'.. q

Eq. 26 is used here in the form where all indices can be raised and lowered

with coefficients O

by use of the metric (Eq. 20). In particular, blank spaces must exist below
the indices ik for k = 1,2,...,p and above the indices jz for £ =
1,2,...,q9. As a matter of terninolﬁgy. the tensor expr;ssion of Bq. 26 1is
referred to as a tensor of type (p,q) and rank p+q to indicate the
numbers of covariant and contravariant basis factors and the total number

of basis factors respectively.

Differentiation of Tensors

To consider the differentiation of tensors, the first step is to con-

sider the differentiation of each factor in the tensor prdduct. Then the
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differentiation process can be extended to expansions of the type given
in Eq. 26 by the enforcement of a Leibnitz rule. The first factor 1is the

i....1
scalar coefficient a P where the derivative is already well

Jqie001
defined by partial differentiition? In anticipation of the extension to
general tensors, the derivative in the yi ~ coordinate direction shall be
denoted by the symbol Di which reduces to the parital derivative B/Byi
on application to functions. When D1 is applied to a natural tangent
vector field 23 as representative element from the next group of factors,
the result must be another vector field. To preserve the basis of natural
tangents; the derivative can be expressed in the form

-> k =
Diej = rij e (27)

where the coefficients Fi§ in the linear combination are called Christoffel
symbols of the second kind. Alternatively, the derivative can also be
expressed in terms of the Cartesian basis ﬁl,ﬁz,...,ﬁn which is constant
for all values of yl,yz,...,yn in correspondence with the domain of
vector field definition. When Di is directly applied to the Cartesian
expansion for ;j in Eq. 4, onlf the nonconstant coefficients have non-
trivial derivatives and the result is given by
+* azxk

De =X _4 . (28)
1%3 ayjayi“k

Since the order of partial differentiation is interchangeable,
Dizj i Dj:i for vector fields on Cartesian spaces. Upon substitution

from Eq. 27 and an application of linear independence, the symmetry property

Ty
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rk.rk

of the Christoffel symbols is valid for all 1i,j,k. This property can
be extended to non-Euclidian spaces by tﬁe definition of a Torsion tensor,
the vanishing of which ylelds a slightly more complex statment than Eq. 29.
For Euclidian space, vanishing torsion is given precisely by Eq. 29. Con-~
sequently, the symmetric lower indices for the Christoffel symbols which
define the derivative of Eq. 27 yields a derivative which is called torsion-
less.

With the torsionless derivative for Fuclidian space, the Christoffel
symbols can be obtained from Eq. 28 when ﬁk is expanded in the basis of

natural tangents. The expansion is obtained from

m, 1 m
G - b i Dy &
dx 3y 9x

where the second equality follows from the inverse relationship for
Jacobian transformations; the last, from Eq. 4. The substitution into
Eq. 28 then yields

0 L2 3AE a otk T . (31)

e
13 ok apdayl ™ 0™ aylayl

From Eq. 27 and the linear independence of the natural tangents, the

Christoffel symbols are represented by

oy 325
13 3™ agdayt

:

’ (32)
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which is a representation in terms of both the Cartesign and curvilinear
coordinates. An alternate and more intrinsic representation would be an
expression in terms of the metric as a functiom of the curvilinear
coordinates. Representations which depend upon some fixed embedding, such
as the Cartesian coordinate frame of reference, could not be considered to
be infrinsic to the space under study. To obtain an intrinsic representa-
tion, the derivative Di given in Eq. 27 will be applied to the metric
expression (Eq. 7) given by the dot product of natural tangents. On appli-

cation, we obtain

Bgm -> -
;—Ii - Di(em . ej)
y
= (D.e ) ° ej +ey (D j)
(33)
r <+ -+ >
- (Timgr) . ej + e (rij r)

r T
8y in * Burlij °

where the second equality is aleibnitz rule; the third, a substitution from
Eq. 27; and the fourth, a substitution from Eq. 7. When 1 and j are

interchanged and when m and 1 are interchanged, Eq. 33 respectively is

given by
38y
’a—yj_" ri jm + g, T ji , - (34)
and
- 3g: _
i . r T
aym 8rjrmi + 8itrmj ' , (35)

R i
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On examination of the right hand sidés of Eqs. 33-35, the Christoffel
symbols are observed to appear in pairs: each symbol in the pair belongs
to a different equation and each symbol differs from the other only in the
ordering of its subscripts. When the torsionless condition (Eq. 29) which
is valid for the derivative in Euclidian spaces is applied, the paired
symbols become identical. Consequently, the subtraction of the metric
derivative of Eq. 35 from the sum of the metric derivatives in Eqs. 33 and
34 collapses by cross cancellation into an expression with just one
Christoffel symbol summation. Interchanging the sides of the expressionm,
the result is given by

3 3 38
oty - e
dy 3 dy

. (36)

Since gkmgmrrij - G:T;j - Fij, the metric formulation for the Christoffel

symbols becomes

ko 8™ (%8 8ny 9844)

. 37
13772 |50 "ot o ) (37

With the assumption of a Cartesian frame, the metric formulation collapses
into the earlier Cartesian representation (Eq. 32) by substitutions from
the metric in Eq. 8 and its inverse in Eq. 23. However, the derivative in
Eq. 27 with coefficients from Eq. 37 is not restricted to Euclidian spaces.
| In continuation, the extension of the derivative to the next group of
féctors in Eq. 26 which are the dual vector fields ;i to the natural tan-
gents are obtained by an application of theLeibnitz rule to the duality
relationship of Eq. 17. Since the Kronecker symbol is a constant for any

particular pair of indices, its derivative vanishes and the differentiated
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duality relationship becomes

0= ni(‘é“ . 'éj)
- 0,8 - Zj + e (,8,)
(38)
- (Diz% . Zj ¥k, (rzjé’r)
K, o+ .k
XIS A

where the third equality comes from Eq. 27; the fourth, from duality. When

the derivative of the dual vector field is written in terms of the dual

basis, there are functions A:j such that D ;k - A?m;m. On substitution,

i
Eq. 38 then becomes -F:j = (Di;k) . ;5 - (A:ﬁ;m) . e; - A?ma? - Aij

which determines the derivative coefficients. Consequently, the derivative
of the dual vector field ;k in the Zi-direction which preserves the dual
basis is given by

e -k

D;e

1 1 - (39)

With the derivative defined on both covariant (Eq. 27) and contravariant
(Eq. 39) basis vector fields, the extension to a general temsor field (Eq.
26) is obtained directly from a Leibnitz rule. The general tensor field of
Eq. 26 can be rewritten in the form

i".i
G',dl' P

Jieeed
s PRRYS. P SPOPE @t 1, - (40a)
q P

13



-21-

where
- +
e = @ ... ® e . (40b)
] 11...ip 11 1p
and
P 3 h
el M.l @...0® 9 | (40c)

are respectively the groups of covariant and contravariant basis factors.

When Dk is applied to the tensor a, the Leibnitz rule 1is used to obtain

3 11. L] .ip ®
Dot = [—— Q e e
k ( k jl...jq) 11...1p

(D, e )® e~ ¢ (41)
jl...jq kil...ip

1)1 3p-++3

ey ced Q@ (De

q
)
C PRRDS e Y

To evaluate the second term in Eq. 41, the Leibnitz rule is applied again

to yield the factor

] .
D ) = : L g ® (D Py ) ®-u- @ e
keil...ip El 1 ® Kt @ ey
(42)
3 Prm e, ® ® e ® ® .
- e L I ) e L 3 BN ) e L ]
Z;. kim 11 T i

m P
A similar application leads to
3qeed

qQ J r
D e 9 .- I‘i": Zjl®...® Z“’@...@:jq . (43)
m= m
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which appears in the third term. When Eqs. 42 and 43 are inserted into
Eq. 41 and subsequently when T i3 interchanged (as a dummy index of
summation) with the respective indices im and jm’ the derivative
assumes the form »

11...1 ' jl...j

p q
Do = (D) Aoeedg S1peeet © e » (44a)

k

in the original basis with coefficients given by

(D a) 11' L ip - é-— ail' . .ip
k jl...jq ayk jl...jq
p 1 i,...r_...1
1 m P
+ r.? a (44b)
mgl krm jl...jq
q T 11...1
- r [s .
& 4, 3T dg

As a matter of terminology, the derivative is called the covariant derivative

of the temsor field a in the direction :k'

The Gradient of a Tensor

-

In Cartesian coordinates, the gradient of a function £ 1s given by

/

the expression _ 7 -

i .
Vf = a ’ (45)

ax m

and moreover, is a vector field which is normal to the surfaces defined by

constant values of f. To verify the latter statement, consider the

EE B
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differential tangent vector dx = ﬁidxi which at a point ;(3) on a
constant f surface can be viewed as a limit of directed secants

-+ > - > -+ -

x(P) - x(Q) to the surface as P approaches Q. By direct evaluation
the dot product (Vf) - dx 1is just df which vanishes when f 1s a
constant and which in turn verifies the statement on the normality of the

gradient. In curvilinear coordinates the gradient (Eq. 45) becomes

i
ve 22 2320, (46)
dy 9x @ 3y

where the first equality comes from the chain rule; the second, from Eq.
24. As an operator, the gradient can be removed from its application to
functions in Eq. 46 and be given the obvious generalization to temsors

which is
V=@ D, - 47

In the generalization, the scalar product became a tensor product and
partial derivatives became covariant derivatives (Eq. 44), each being the
extension of the former.

To illustrate the general computation of gradients with Eq. 47, seve¥a1
useful examples will be comsidered. The simplest and most common example
is that of a vector field x = ut;i. From the covariant derivative in Eq.
44, the gradient becomes

b §
> _f3a . mpl \tke 2
Vo (ayk+a I" )e ® ey

- (48)
i

k
-5 (‘::;w“ r;m)zr@zi
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where the last equality follows by using the metric to lower an index
(Eq. 18a). In fluid mechanics, the next most common tensor 1s the stress
tensor which 1s a second rank tensor. Second rank tensors are often called

dyadics. As the final example, the gradient of a dyadic o = aij-éj_@;j

is then given by

1
- (32 ] A1 ir ~§ \>k -+ -+
Vo (—ayk sat i 4o I‘kr)e ®3,0% , (49)

from a direct application of Eq. 44, as before.

The Divergence of a Tensor

The divergence operator is a modification of the gradient operator
(Eq. 47) obtained when the tensor product i1s replaced by a dot product.

In symbols, the divergence V+* 1s given by

+k
v e D, - (50)
Upon application to a Cartesian coordinate expression of a vector field

a = uiﬁi, the easily recognized form
i
Veat = — , (51)

13 obtained from Eq. 48 where yi = xi, Christoffel symbols vanish, and
the dot product replacement becomes a Kronecker delta.

To obtain the divergence of a vector field in curvilinear coordinates,
the general expression of Eq. 50 shall be applied to a vector field in the
-
e

covariant basis i of natural tangents. The simplest case occurs when the
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vector field is a particular natural tangent. For each fixed subscript 1,

the divergence is given by

] 4 '
i j) rkiéj P T (52)

Jz
(Fk
From Eq. 37, the sum of Christoffel symbols becomes

S i LT .
13" 2 y 3yj ay" 2 Byi

(53)

where the last two sums cancelled upon an interchange of the dummy indices
m and J in the last sum. By Cramer's rule, the inverse metric is given
by gjm = Ajm/g where Ajm is the (j,m)th cofactor of the matrix of

metrics (g.,,). The cofactor Ajm also appears in the expansion by
ik
a™

+ 8in
Since 1its coefficient gjm appears no place else in the expansion, the

minors about the jth row which is written as g = ngAlj + ...

cofactor is just the partial derivative Bg/ngm. Hence, the inverse metric

can be expressed in the form:

Jm _13g
8 3 asjm . (54)

When the inverse from Eq. 54 1s substituted into Eq. 53, the sum of Christoffel

symbols becomes

rd .__E__.L.__E_.Li_fi _ (55)
1 2808y, 5yt 281 g gt

->
. Consequently, the divergence of the natural tangent field ey is given by



-26-

ald]

when Eq. 11 is applied to yield VE'- $J. Unlike the divergence of Cartesian
bases elements ﬁi’ the natural tangents ;i have a nontrivial divergence
unless J 1s independent of yi. In continuation, to obtain the divergence

of a vector field a = ai; the gradient given in Eq. 48 must be contracted

i
by replacement of its tensor product with a dot product. The result becomes

i i
R [ i k _ da m 1
Vea ( -+amPkm) § T te T

ayk i ay im
i
- 3"‘—1 +aqt o, (57)
oy

where the last equality comes from an interchange of m and {1 and an
application of the torsionless property (Eq. 29). From Eq. 55, the

Christoffel symbol sum 1s replaced to yield

i i
+ 30 a” 3 1 2 i
Vea = =2+ =="—(/fg) = =2 Vg , (58)
syl /5oyl /g ayt

which reduces to Eq. 56 when uj = Gi for a fixed 1.
Similarly, the divergence of the dyadic o = aij:i®;j is obtained
from the gradient given in Eq. 49. With the dot product replacement, it

becomes

1Y
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o rj-i ir >k +
yk +a I'kr+a ijr e ei® e

R et

j -+
I' k-i—cv. I':h__}e:l

(59)

i
d=a
{ 2 (p+at riu} Z,
1% ;

2 @i/p +alr } :
a ir

where dummy indices have been interchanged, the torsionless property has

been applied, and Eq; 55 has been used.

The Laplacian of a Tensor

When the divergence operator (Eq. 50) is applied to the gradient

(Eq. 47) of some tensor (Eq. 26), the composed operator
A=V -V (60)

which is applied to the tensor is known as the Laplacian, and on surfaces,

as the Laplace-Beltrami operator. It is a simple matter to check (with

Eqs. 45 and 51) that Eq. 60 reduces to the standard Laplacian when Cartesian
coordinates are agsumed. To examine the application of Eq. 60, the Laplacian
of a function f shall be computed in curvilinear coordinates. From Eq. 46,

the gradient is

(61)
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where the metric was used to lower (Eq. 18a) the index of the basis
vector field. With the vector field coefficients ai taken from Eq. 61,

the divergence obtained in Eq. 58 becomes the Laplacian

af = 3—1(3“’13—%/5) : (62)

1
/g dy 3y

in curvilinear coordinates. Further applications to higher rank tensors
(1.e., rank greater than 0) follows the same pattern and need not be

pursued here.

The Identity Dyadic

The identity is defined to be the tensor which leaves other tensors

unchanged when a dot product on either side is taken. The dyadic
1= ®e , (63)

is the identity. For notational simplicity, consider the vector field
-> i»> -> {+ >r <> i.r i+ >
@a=ae. Then a°*I=awe *e Gber =ade =ae =a and
I~ E - ?er . (ai:i) - aigrizr - aizi - 3 where Eq. 18b was used to
lower the index. For higher rank temsors (Eq. 26) the dot products occur
respectively on the first and last factors in the basis. Since the algebra
is an exact parallel to the vector field case it need not be repeated to
establish that Eq. 63 is the desired identity. By using Eq. 18 to raise
and lower indices, the identity dyadic can also be expressed in the alter-

native forms

1
I=g ¢ @ =2, Q¢ =g Mm@l . (64)
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The Cross Product

In three dimensions, the cross product of the Cartesian ﬁnit vectors

is defined by
8, x G = ettha (65)

where eijk vanishes when (i,j,k) 1is not a permutation of (1,2,3) and
is otherwise equal to the sign of the permutation. From Eq. 30 and the

inverse of Eq. 24, the Cartesian unit vectors can be expressed as

_11-* ax 1
N =5e - (66)
y

By substitution into Eq. 65, we have

x> +m 11k(2 x" >
m & k € ’
dy ‘
or (67)
3x 3 m o, T ijk 22 ey
k

3ym 3y x

by linearity of cross product. When each side of Eq. 67 is multiplied by

(Byp/Bxi)(ayq/BxJ) and summed over i1 and j, the equation becomes

PO x 2T kAP A Ay
v T ax! axd ax¥ *
or L (68)
Pq
P28y ,
/g

from the definition of a determinant applied to Afl in Eqs. 11 and 22. To

interchange covariant and contravariant basis elements, Eq. 18 1is applied



to yield
pal pal
+ *p. 29 € + £ +k
X = X - — - ’ 6
€1% 8y " B1plyq € S T Byplyq = 1 7 BapByetak T (€9

which motivates us to define equ as a tensor with indices which can be

raised and lowered with the metric. Then Eq. 69 becomes

e

zixzj.—%zk , (70)
/s

pat g sijk from the definition of determinants.

where eijk = gipgqukke

The Curl of a Vector Field

In three dimensions, the curl of a vector field 3= aj;j is obtained

from the gradient

- da >
Ve = (;;-} -ukr‘i‘j) o @ej_ , (71)

when the tensor product is replaced by a cross product. To indicate the

replacement, the curl is denoted by v x a. Upon substitution from Eq. 68,

it is given by

vxa-si-’f(a—"i-akrk)z s & (72)
';g- ayi ij/ m /g— ayi m

whére the Christoffel symbols vanished due to the antisymmetry for 1 and-
j in eijk and the torsionless property (Eq. 29) of symmetric subscripts.
In Eq. 72, the metric can be used to raise the subscript (Eq. 20) should the
vector field have been given initially as a= urz;. In addition, it is

a simple matter to check that the curl given in curvilinear coordinates re-

duces to the usual Cartesian expression when Cartesian coordinates are ingserted.

myr
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FORMS FOR THE EQUATIONS OF MOTION

In vector analytic notation, the equations of motion for a viscous

compressible, heat conducting gas (c.f. [ 3]) are given by

%% +Ve (ov) =0 . (73a)
9E > > ' '
T Ve{Ev-KVT+T°v} =0 . (73b)
g—t(p-\;) +9{pv @ v +1} =0 , (73c)

where t 1s time, (0 is mass demsity, v 18 velocity, E 1s total energy
per unit volume, T = T(p,E,v) 1is temperature, K is thermal conductivity,
and T 1is the stress tensor. Respectively, the equations are mathematical
statements for the conservation of mass, energy, and momentum where the first
equation (Eq. 73a) is usually called the continuity equation. To complete

the system, the stress tensor is given by
2 >
T= (p+F uvev)r - 2up , (74)

where p = p(p,E) 1s the pressure, ﬂ is the viscosity, I 1is the identity
tensor, and D 1s the deformation tensor which is defined to be the symme-
tric part of the velocity gradiant. Alternative formulations arise, for
example when the energy variable is changed or when turbulence is modeled
either algebraically or with the addition of equations ([ 4] - [10]). However,
to examine various forms of the quations for computational purposes, it is
sufficient to conmsider the formulation just given since the pattern of

operations on other formulations would be the same.
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Contravariant Form

When the Navier-Stokes equations given in Eq. 73 are directly expressed
in curvilinear coordinates with velocity v - vizi, the form of the system
is called contravariant to indicate the contravariant variables vi. With
the contravariant form, the equations are determined entirely by the metric
which can be either depend or not depend upon time. The metric description
{s a determination in terms of physical distances and angles in the coordinate
system which upon discretization for numerical computations translates into
distances and angles for a coordinate mesh. In the case with a time indepen-
dent metric, the vector analytic expressions in curvilinear coordinates are

used directly. The continuity equation (Eq.73a) becomes

% (pv8) + g—; (ovive) =0 , (75)
y

from the divergence formula of Eq. 58 and a multiplication by /8 . In the
energy equation, Eq. 46 1s applied to yleld the temperature gradient
VT = gij(aTlayj)zi where Eq. 18a was used to lower the basls index. When
the dot product in the stress term is computed in the covariant basis (Eq.
26), the product expression becomes T °* V= (Tij;i ® Zj) . (v‘Zr) - gtjrijvrzi.
Then the sum of Evi;i, the temperature gradiant term, and the dot product
term is just the expression under the divergence in the energy equation
(Eq. 73b) and is given by

A e . (76)

1_ 13 3T
{Ev 8K3Y1+3rj

From the divergence formula of Eq. 58 and a multiplication by /g, the

energy equation then becomes



Io:

g— EVg) + - {( g 2L S eyt y r)v’s} . (77)
aﬂ '

In contrast to the continuity and energy equations, the divergence of a

dyadic must be computed for the momentum equation. From the linearity

properties (Eq. 25) of the tensor product, the dyadic becomes

VO + 1 = 0(v'3) ® 13y + 2, @2, = (ovivl 4ty ©3,. When

the formula (Eq. 59) for the divergence of a dyadic is applied, the momen-

tum equation becomes
) \
‘—E (pvj/g—) + :y—i [(pvivj+'rij)/g—] + (pvivr+ tir)fg-l"ir :j =0, (78)

after a multiplication by /3.

To complete the specification of both the energy and momentum equations,
the stress tensor must be expanded iﬁ the covariant tensor product basis to
obtain its coefficients 'rij. With the exception of the deformation tensor
D, all parts of the expansion have been obtained previously. The deformation
tensor 1s defined to be the symmetric part of velocity gradiant which is
obtained by an application of Eq. 48 and which is a dyadic. The dyadic 1s
written as a linear combination of tensor products of vector fields. Each
tensor product of véctor flelds o ® E can, however, be decomposed into
a symmetric part 3z © B+ [ ® ;] and an antisymmetric part
g['& ® § - -5 ® ;] by a direct application of the linearity properties
(Eq. 25). When the velocity gradient is obtained from Eq. 48 and when the

symmetric part is taken on a term by term basis, the deformation tensor

is given by
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(79)
- i{gki(:L:-!- vmf';m) + gkr(a_v_:_; + vml"tn)} :1 ® ;r ’
4 Iy

where the second equality is the result of an interchange between the dummy
indices of summation 1 and r. With interchange, the coefficients of the
deformation tensor have symmetric indices. 1In general, when the symmetric
part of any dyadic is taken in the given basis, the s?mmetry will become
equivalent to a symmetry of indices. In particular, the identity dyadic
(Eq. 64) 1is seem to be symmetric{ hencé, the stress tensor as a linear com-
bination (Eq. 74) of symmetric temsors is also symmetric. From the identity
in Eq. 64, the divergence formula of Eq. 58, and the deformation tensor in
Eq. 79, the expansion of the stress temsor (Eq. 74) in the tensor product

basis becomes

ir -+ >
T=T eiQ9 e_ . (80a)
where
4 i
t1f - gir{'p-i-zu a—k(v /_)} - u{gki(a—v-k—+ vml":m) + gkr(ik + va';'m) .
3/g 3y 3y dy

(80b)

When the tensor product in Eq. 80a 1s replaced by a dot product, the trace
of the stress tensor is obtained. From Eq. 7, a Leibnitz rule, and Eq. 55,

the trace is given by

w0 = e = e (Ep L) | - L)
- : 3Y j 3y

B i
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where 6: sums to 3 and the torsionless property (Eq. 29) has been used.
The form of the trace is particularly simple and clearly has a physical
interpretation.

When the stress tensor is to be applied in a numerical calculation,
the form given in Eq. 80 is often not convenient since the solution vari-
ables are not separated in a concise manner. From an application of a
Leibnitz rule and Eq. 55 to the velocity divergence in Eq. 80b and from

Eq. 37 for the Christoffel symbols, the coefficients of the stress tensor

become
ir ir ir k ijr ka
T =g p+a.kv +bk —_, (82a)
2y)
where
ir _ {3 drm , 3giT
g’ = u(, g T +E— ) y (82b)
dy
and
i
bk:’r - u(‘; tiréi-s“tsi-g”&i) > (82c)

after some algebraic manipulations. The form given here can then be directly
coded into a computer algorithm by the conversion of the summation indices

into computer loops. Moreover, the eqﬁations of motion in contravariant

form can be constructed on the computer with the stress given in Eq. 82 in a
term by term fashion with the index conversions. By an examfnation of the
equations, the construction depends only upon the metric; hence, a general code
can be made vhich accepts the metric deta as input which is derived froa a parti-

cular choice of coordinate system for a particular problem.
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Wheﬁ time;aebéﬁdént problems are considered, fixed spatial coordinates
can be used only for cases where the boundaries of the flow region do not
move in time. In cases where the region is rigidly moved such as in a
rotating cascade of airfoils or more generally where the region 18 also con-
tinually changing shape, the fixed coordinates must be replaced by coordi-
nates which are time-dependent. Relative to a Cartesian space-time frame

ﬁo,...,ﬁn, the time-dependent coordinates can be expressed in the form
; = xi(yo’-'-syn)ﬁi Ty (83)

which is an extension of Eq. 2 obtained by the inclusion of time coordinates
xo and yo and a corresponding increase in the range of summétion i to
go from 0 to the number of spatial dimensions, n. To obtain the contra-
variant form of the equations of motion for the time-dependent coordinates
(Eq. 83), a time-dependent metric formulation must be used. Unlike the
positive definite Cartesian formulation for Euclidian distance given in

Eq. 13, the time-dependent metric comes from the Cartesian formulation for

distance measured in terms of the Lorentz frame from special relativity

({11] - [13]) and is given by

22

2 - (dx)?

@s)? = 2(ax%? - (axh? - (ax , (84)

where c 1s the velocity of light in free space. With the metric coefficients
sij derived from Eq. 84, the continuity and momentum equations can be ob-
tained from a divergenceless stree-energy tensor which is given by

r=1 @3 ., (85a)

1y
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where

Tf= v, v + (p+d U7 6L - w0 T, + oW1 ,  (85b)

and indices, including summation convention indices, all start at 0. Since
the metric derived from Eq. 84 depends upon the velocity of 1ight and since
the velocities in classical mechanics are much less, the Navier-Stokes equa-

tions can be retrieved as an approximation to the equations
VeT=0 , (86)

when terms of order t:-2 relative to unity are discarded. The approximation
to the 0th equation of the system of Eq. 86 1s just the continuity equation
which has the same form as Eq. 75; the remaining equations are the momentum
equations in the respective coordinate directions. The advantage inhereat in
the approximation of the special relativistic equation (Eq. 86) is that the
Navier-Stokes equations are expressed in a manner independent of any space-
time coordinate system and are given a metric structure induced from the
relativistic structure. The metric structure contains the classical Coriolis
and centrifugal force effects in a clean and concise manner. That is, in
addition to spatial changes, the metric contains all of the time-dependent
variations of the cooridnate transformtions. The details of the approximation
were presented in McVittie [14] for inviscid flows and in Walkden [15] for
vigcous flows, including an energy equation. When the equations are fully
expanded with the intent of a direct conversion of indices into a computer
algorithm as in the time independent case, the system of equations contains

a large number of terms. Neither the derivation nor even the expression

[16] shall be reproduced here.
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Differential Forms

When a flow field with shock waves is to be numerically simulated,
a conservation law form for the governing equations (Eq. 73) 1is often
useful, especially in cases where the mesh is adapted to a shock wave;
for then, the jump conditions can be satisfied merely by mesh alignments.
Before methods are developed to cast the governing equations into a con-
gservation law form, we shall develop the theory of differential forms
which appear in the integral formulation for the comservation of fluid
dynamic quantities. The simplest nontrivial differential form is given
by the difféfential df of a function f and 13 called a differential
1-form or simply a 1-form. In any system of coordinates ;, the l1-form
can be expanded to yield

df = -af—i ayl (87)

3y
by an application of a chain rule at any given point of the underlying space.

The expansion can also be interpreted as the expression of the l-form df in
the space of 1-forms which has a basis composed of the coordinate l-forms
dyl,...,dyn. From another viewpoint, the space of l-forms is obtained by the
application of an operator d to functions f which can be considered as
O-formg. In continuation, it would then femain to define the operator on
successively higher order forms. At each stage the operator would increase
the order by one, and the result of any application would lie in a space of
differential forms constructed with a suffiéient aumber of products of l-forms.
The products are known as exterior products and are chosen to model the
orientations of the differential area elements which appear in integration.
Since the needed linearity properties are already preserved with tensor pro-
ducts (Eq. 25), the exterior product is obtained as a modification in a

msanner that is similar to the construction of tensor products from cross

e
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products. In particular, the temsor product ® 1s replaced by the exterior
product . which, in addition, allows the order of factors to be interchanged
with changes in sign. For any two vectors U and 3, the interchange 1is

given by the rule
(88)

e+
>
<+
]
'
<+
>
e+

which is extended to higher order products by successive applicationms.
From the rule, any product with repeated factors must clearly vanish.
Consequently, for a space of dimension n, there can be at most n
factors since an (nt+l)st factér could be expressed as a linear combina-
tion of the first n. Moreover, with n Ilinearity independent factors,
a reordered product would differ from the original by the sign of the
permutation that resulted. An important applicatiom of reordered pro-

ducts is in the definition of determinants. Suppose that a linear trans-
<+ j«-) -+ -+ > -+

formation is given by z, = Aiwj for bases ZiseeesZy and Wyseoo oWy

related by the matrix (Ai). Then, by linearity and by successive appli-

cations of Eq. 88 we have

+ > j],-v- jn 11 Jn-'b -+
zla...hzn- (Al vjl)a...A(An wjn) = [Al ...An leAo-oA wj

n
(89)

jl jn -+ - j - -

- sgn(jl.ool',jn) [Al L n ]wlAl..A wn - det(Ai) wlﬁotoﬁ Vn ]
where sgn(jl,...,jn) is the sign of the permutation of jl,...jn from
the ordering 1,...,n and the last equality comes from the definition of a
determinant (c.f. [17], [18]). When f in Eq. 87 is successively t#ken to

be xl,...,xn, there is a linear transformation between the bases of l-forms.

The relation between volume elements is then obtained from Eq. 89 and is
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given by

i
dxla ..o nds® = det(a—x—) dylnee.ndy® = J dyla .. ~dy®, (90)

3y

where J 1is the Jacobian from Eq. 5 which appears in volume integrals when
coordinates are changed. From the relation, the volume elements are observed
to comprise the one-dimensional space of n-forms. Since the exterior product
with any more than n-factors would vanish, the space of n-forms 1s also the
last non-trivial space in a sequence of spaces starting with O-forms. Let
A denote the space of O-forms which can be taken as the collection of all
infinitely differentiable functions over the underlying n-dimensional space.
Let E denote the n-dimensional space of l-forms which can be locally
generated from a basis of coordinate l-forms dyl,...,dyn with coefficients
from A. In continuation, let APE denote the space of p-forms which can
be generated from a basis obtained by the formation of all possible pth de-
gree exterior products of a basis for E. For example, when p = 2 and
when the coordinate l-forms dy1 are used, the basis for AZE is given by
dy#ﬁdyj for 1<1<3j<n. For unifotmity of notation, p can be taken
to start at 0 so that AOE = A and AlE = E.

With the spaces of differential forms APE, the differential operator
d: AOE -+ A1E defined in Eq. 87 can be extended to an operator
4: APE + AP*1E which is valid for p = 0,1,2,... and which satisfies the

conditions

—
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(i) df = —— dy »

(11) d(c+B) da +d8 forp=gq |,
(91)

(111). d{da)

|
o

da~f + (-1)Pan.dg ,

(1v) d(a~ B)

for £ in AOE, a in APE, and B in AJE. The differential operator
which operates on the exterior product spaces APE and is defined by
Eq. 91 is known as the exterior derivative [19]. The motivation for the

definition can be seen from an application in terms of the arbitrary
i i

1

coordinates yi where o = ay dy " a...ady P and B=15%

] 1 jl...jq

j coedy
dy Lu...ndy’ % Both (1) and (11) of Eq. 91 are clear. In (111) 1f d

vanishes on differntials, then

Ja
i,...1 i i
da --kl—z dykAdy 1/\ l.oAdy p »

and

da; 4 i i

1 k 1 P
d Ad Ad Ac.ol\d
ry¥ay) y ~day* . dy 4

2 2 (92)
aai o”a N N

cod 1....4 .
- 1_»p_ L 2% ap) iay¥.dy 1. ... 4y P
E ay*ayd aylayk ' i v

Ik

. d(da) =
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which vanishes since the order of differentiation in the second derivatives

is interchangeable. For condition (iv),

i i J i
j dy 1....Ady pAdy l,\...,,dy q)

d(aA B) = d(a b
il...ip jl... q

da ab
. ilo--i jloouj k il jq
K bj j +ai i K < dy Ady A e Ady
ay l'.. q 1... p ay
3 (93)
a
1....1 1, 1 j i
1 k 1 d ,
-(—_k—-—zdy Ady A..bl\dy p)»\(bj ;..j dy }A‘flhdy q)
9y 1 q
ab
1 1 Jeeeedy 3 1
1 | 1
+dy A ai idy Ao--l\dyp A( k dy A-.ol\dyq)
1.’. p ay

= da~B +(-l)pa/\ds ’

where the (-1)p is the result of the p Interchanges reqﬁired to bring

dyk through dyil A...4~dyip. On examination of the applications in terms
of coordinates, it is evident that the chain rule can be used to prove that
the exterior derivative 1s independent of coordinates. A rigorous discussion
is given by Flanders [19] where, in addition, the exterior derivative is also
presented over surfaces. - | '

In three-dimensional Euclidian space with Cartesian coordinates (xl,

xz,xS), the curl of a vector field (Al,A ,A3) 18 obtained from the exterior

derivative of the l-form

1 2 3
as= Aldx + Azdx + A3dx ’ (94a)

It B
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and is given by

3A., 0A d BA %A, OA
do = —%- '—§' ~ dx + ( A;. 1 dx A dxl + (—%- ——%)dxl ~ dx (9l‘b)
ax~ 9x x~ 9x ax~ 9x

Similarly, the divergence is obtained from the exterior derivative of the

2-form

and is given by
9A %A 9A
da = (—L+ =24+ 3)axt.ax?.ax® . 193b)
1 2 3
ox ax ox

In vector analysis, the curl and divergence given in the above form appeared
when boundary integrals were converted to volume integrals by means of
theorems under the names of Green, Divergence, and SCOkeQ. In continuation
with differential forms, there is one theorem which supercedes the vector
analytic versions and is known as the generalized Stokes theorem. For a

p-dimensional surface M and a (p-1)-form a, the theorem is given by

a{a-i{da , (96)

where oM 1s the boundary of M. From the general;zed Stokes theorem, the
boundary operator 9 1is clearly realted to the exterior derivative d.
Since the boundary operator is only applied to surface; such as M above,
it 1s an entirely topological operator as opposed to d which operates on

forms. The relationship, however, comes form the existence of a parallel
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theory for 3 under aﬁ extension that is similar to the development of d.
The parallel theoriés are of precisely the same form but with different
objects. This remarkable similarity is stated more precisely in the
deRham theorem [19], [20].

Another parallel development of a simpler nature can also be used to
relate differential forms to the covariant and contravariant basis elements
considered in tensor analysis. In particular, the vector field of natural
tangents 25 to coordinaﬁ; curves in the yj variable can be expressed

as the differential operator

ey - :—)3 , (97)
rather than its application to any arbitrary position vector as originally
given in Eq. 3. For coordinates on non-Euclidian surfaces, the operator
form is essential since position vectors cannot be readily defined. More-
over, any vector field is a first order operator since it 1s‘a linear com-
bination of the operators given in Eq. 97. With the vector fields in opera-

tor form, the differential l-forms can be defined by means of an inner pro~

duct < , >. For any vector field W and any function £, let

<df,W> = WE .

->
e

4 and f = y1 the inner product becomes

In the case when ﬁ -

(99)

i

1T
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which is a duality statement similar to Eq. 17, establishing a parallel

between the l-forms dy1 and the contravariant basis elements :1.

Conservation Law Form

In a fixed region M of n-dimensional Euclidian space a quantity
U 1is conserved as a function of time if the rate of change of U 1in
M 1is equal to the negative sum of the flux & of quantity U across
the boundary 9M. In the language of differential forms the conservation

of U 18 expressed as

g—fu@dv--_/'m . (100)
M

for an n-form dV as a volume element on M and for some (n-1)-form &
which is some function of U that describes the U-flux through M. If
xl,xz,...xn are Cartesian coordinates ordered in such a way that

dV = dxlh vee ndx® and is positive, then the flux can be expressed as
n
B = P (-1)i+lFi(U) ® deA se s A dxi-lf\ dxi+1;\ ss e A dxn ’ (101)
=1

where Fi denotes the flux in the direction xi. When U 1s a vector
quantity, the functions F1 are vectors in the same space and the form
@ is known as a vector (n-l1l)-form. As an illustration, consider the

two~-dimensional case where the flux reduces to the l-form

w = (-1)1'*1171 ® dx> + (-1) 1"'2:-'2 ® dxt
_ (102)
- Fl ® dxz = Fz @ dxl .
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In Figure 5, a differential volume element is displayed with vertices
A, B, C, and D. In goingfrom A to B, dx2 = (0 and dxl i3 positive
which implies that the flux o = --F2 ® dxl points in the negative
xz-direction for positive components of Fz. Along BC, dx:l = 0, dx2
is positive; and hence, the flux w = l"l®dx2 points in the positive

xl-direction for positive components of Fl. In both cases, the flux

is directed out of the volume element when it has positive components.

A similar argument for CD and DA with negative values for dxl and
dxz respectively leads to
2
X
} 1
w=F, ® (-dx™)
D I c
- dxl
2 2 2 2
w-Fl®(-dx)<———-dx dx——-’m-F]_@dx
dxl
A B
1
O = - FZ @ dx
1
» X

Figure 5. The flux through a differential volume element in two-dimensions

B
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the same conclusion so that positive components of the Fi are always

directed outward. With the general flux given in Eq. 101, an application

of the general Stokes Theorem (Eq. 96) to the time comservation of U

stated in Eq. 100 yields

n i
fgg®m.%fu®dv-fw-fm--f Y. Eow . o
M M M M 1=1

M i=]1

where the first equality follows from the time independence of M; the

last, from an application of the exterior derivative in which the factor

i+ accounted for the required interchanges to retrieve the volume

(-1)
element deA .ee ndx" for each term. By allowing M to be arbitrary,

we obtain
n i
S+ E-0, (104)
1= ox

which is referred to as a system of conservation laws expressed in conser-
vation law form. The termonology is clearly reasonable since each flux
Fi appears under a derivative in its respective direction a/axi. An
integration with respect to xi then yields the exact differential dF1
which upon integration over the range of xi reduces to a difference

between boundary values. A number of numerical methods (e.g. [21], [22])

are adapted to comservation law forms so that the integratiom in x1 for

Fi reduces to the same boundary values as in the differential case by means

of a cross cancellation process such as a telescopic collapse of the flux

terms.
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Conservation Law Form from the Contravariant Equations

Since the stated governing equations for fluid dynamics (Eq. 73) are
conservation laws for mass, energy, and momentum, it should Be possible
to express them in conservation law form for any system of coordinates.
In the contravariant form with coordinates fixed in time, only the conser-
vation of momentum (Eq. 78) is not in conservation law form (Eq. 104) since
it has terms that are not differentiated. Such terms could be viewed as
source terms in comparison to the remaining terms which appear in conserva-
tion form. The source terms, however, are due to spatially non-constant
natural taﬁgents :i which arise from nonlinear coordinate curves and non-
uniform rates of travel along coordinate curves even if they are linear.

Otherwise, covariant derivaties of the ;i would vanish; as a result,

Christoffel symbols would also vanish (Eq. 27); and consequently, the momen-

tum equations would reduce to conservatiom law form. With nontrivial curvi
linear coordinates, the nonvanishing source terms can be absorbed into a

conservation law form obtained by a natural set of integrating factors. To
observe which set is natural, the Christoffel symbols in the momentum equa-

tion (Eq. 78) are replaced by their coordinate expressiom in Eq. 32 to obtain

1 2 k
[%; (ovivE) + 284 oT A a%;]zj -0, (105)
3y 9x 3y oy

vhere 0‘1‘1 - (pvivj-l-'tij)fg-  for notational simplicity. By examination, the
inverse Jacobian transformation is the natural integrating factor since the
first order part of the last term would be removed and a Leibnitz form would
result for spatial derivatives. The inverse Jacobian also corresponds with

a change of basis from the curvilinear directions 33 to the Cartesian

directions ﬁm. From an application of Eq. 4, the result is given by

tE 13
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i3 2 k
[ pv_j./—ax) ax 3o - +016:iX_I]am.o . (106)
a3 ayt ay"ay

In the last term, the effect of the Kronecker symbol 6: is to replace k
by m. When, in addition, the dummy index t 1s replaced by §, the

equation becomes

m ., 1j '
[ (pvjl'a") ::J :: + ol Li(:;)]c o , (107)

which, in component form, reduces to the system

-g—t(pvjf ::J) 17 (“ ::j)- 0o, (108)

that is in conservation law form.

Congservation Law Form Relative to a Fixed Frame

An alternative method to obtain conservation law form for fixed coordi-
nates is to use a fixed frame of reference. As can be noted, derivatives of
a fixed frame vanish, and consequently, Chfistoffel symbols can be selectively
removed to yield a conservation law form. In general, the nonconservative
terms appear when the divergence is computed for a tensor of rank two or
higher. On examination of the divergence operator given in Eq. 50, only the
first tensor factor need not be expressed in the fixed frame. Let each co~-
variant basis element ;i and each contravariant basis element Z* be
expressed in terms of a fixed frame ?i,fé,...,f; by the respective linear
combinations e ,Aijf and e - kdf which result aince the fixed frame

is a basis for R". Since :k = gkizi =g A j? - kdt s the coefficlents
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k3

are related by A M‘Aj

=g Al which implies that the rules for raising
and lowering indices are followed; hence, we are justified in using the
same sybmol, A, for both covariant and contravariant expressions. When
the last p+tq-1 factors of the general temsor in Eq. 26 are transformed
into the fixed frame, the tensor is expressed in the form

ikz...kprl...r

¢ ‘;
a=8B ® 8 s (109a)
i kz...kprl...rq

where

ik, ...k r....T i1,...1 k k_ i, r jr
Bkz pLliq 2P 2 A, PAll  A799 (100b)

for coefficients and

-

- -+ -3
B kr..c ~5 ©®--Of OFf ©...0f , 109
2 pl q 2 P 1 q

for the fixed tensor. Since the derivative of the fixed tensor (Eq. 109c)
vanishes, the divergence is an exact parallel to the divergence of a vector

field (Eqs. 52 - 58). In particular, the divergence is given by

Ty
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2 q
ik,...Tr
2 q ik,...r
o 2o, oB > 2 qn.] =
e 3B e, +8 Toi €4(® B ...r
y 2 q
5B 1kye--Tq o fkyeooTy
- 3 m 61 +B rmi Gj ® 8 2...r (110)
y .
ik,...r
2 q ik,...r
I X-) : B 2 q .1
{3 i + B P ® Bk . -
y q
ik,...T
1 3 2° q
- =—<— [B g ® 8 .
JE- i ( ) kz...rq

On substitution into expressions for conserved quantities, conservation
law form can be readily obtained, provided that /E is independent of
time and thus can be brought through any existing derivatives with respect
to time. An example is given by a substitution into the momentum equation

(Eq. 73c) to yield the conservation law form

{gt (pv A /-) ay [(pvivj+tij) k/g_]} (111)

When the fixed frame is chosen to be the basis of natural tangent vectors
to coordinate curves at some fixed point in space, the momentum equation in
Eq. 111 reduces to the form derived by Vinokur [23] for application to each

point on a coordinate mesh. About a mesh point F, the functions Ask  need

only be applied along coordinate curves, even though they should exist through-

out the volume element surrounding P. For P e (P1 Pz,...P ), let

3i = (Pl,...,Pi+1,yi,Pi+1,...,Pn) be the variation only in the yi coordinate

direction for 1 = 1,2,...,n0. Then about 3 we have
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§@p =af@pe® (112)

where Ajk(ai) is a function of yi which reduces to 6? when yi = Pi.

Along the coordinate curve in the yi variable, the covariant derivative
can be expressed in terms of the Ajk by a substitution of Eq. 112 into
its definition as a limit of difference quotients. With the substitutionm,

the covariant derivative Di of ;5 is given by

> > > >
ei(Qi) - ej (P)

(2 @) = ,lin

g +P R
k k
- 251imF A4 Q@ - 4, (?)];k@) (113)
1+ yi - Pi J
k
3A
- i > 3
N &) -

When the expression for the covariant derivative in Eq. 27 1is evaluated at

3 and is inserted into Eq. 113, we have

K

3A
k- —d (114)
13751

y

by linear independence. The point of evaluation P can be omitted from

Eq. 114 since ? can be an arbitrary point. In an anticipated numerical
simulatiéﬁ'wich Eq. 112, there would be distinct conservation laws (Eq. 1lll)

in correspondance with distinct mesh péints. Consequently, such an application
would be better suited to explicit numericgl methods in order to avoid
simultaneous multiple representations of the governing equatioms at each

mesh point. . N
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A Comservation Law FonmPrése;ving'Transformation Rule from Differential Forms

A more direct method to obtain conservation law form for physical con-

servation laws is to use differential forms rather than to modify the tensor
form in the previous manners. In addition, to include time variations in
both the solution variables and the coordinates, the flux of Eq. 101 is

replaced by the n-form

N

n
we DEDFO@a aeiaa WL L, (115)
=0

over (n+l)-dimensional space-time where xo denotes time, and for notational

AN '
simplicity, the symbol dx® " means that dxk is deleted from the exterior
product. For an arbitrary region M in space;time, the conservation of a
quantity is equivalent to its flux through the boundary oM summing up to

zero. From the general Stokes theorem (Eq. 96) we obtain

7 n aFi .
O-fm-fdw--/(z -—i)®dV . (116)
i=0 ox
oM M

M

and the conservation law form

1
¥ _ _o , (117)

i{=0 axi

n

since M was arbitrary. Since differential forms are independent of
coordinates, the conservation law form in Eq. 117 can be obtained for
different coordinate representations of w and dw by a mere application

of the transformation rules for differential forms and exterior derivatives.

When coordinates are changed to yo,yl,...,yn the flux (Eq. 115) becomes
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k=0

which is in the original

tion, each of which goes

I
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derivative then yields

9
-2 I

k=0 3y

on j0 Bxk
dy A ~
g e
dy dy
axq ﬁga\\ ax“
j LN I ) j . 0 a j
dy 0 dy k dy n

(118)

form of Eq. 115 but with extra indices summa-

from 0 to n. An application of the exterior

3x0 Bxk 3x™ jk ,jO //3;\ jn
j Fk j cue j .-0—3— ®dy Ady A-u-Ady A-o-Ady
sy £ U 350 gk R
0 '/,;\‘ n ]
9x Ix ax 0 n
F s es s ® dy ,,A---Ady
k3, I 1.
dy dy ay
on ék\ 3 0 n
F sgn(j ,ll'j ) s see T 2 @ dy J\o-o;\dy ’
k 0 n j0 jk jn
Ay y 3y

(119)

where sgn(jo,...jn) 1s the sign of the permutation of J;,3;5:005d, from SR

the ordering O0,1,...,n.

33“(.10’ .s 'jn)

ax°

//1>\ n
9x X

j * e 8 j ,
dy k ay n

Mm3

To simplify the exterior derivative we note that

(120)
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is just the cofactor of the matrix (ax“/ayl) at the kth row and jkth
column for fixed k and jk' One way to see this fact is to note that

the expression is the determinant of the full (n+1) X (n+1) matrix
with unity in the (k,jk)th position and zeros for the remaining positions
in the kth row and jkth column. By Crémer's rule [17], the expression
then reduces to (3yjk/3xk)J where J 1is the Jacobian, det((aleaym))..

On substitution, Eq. 119 becomes

]
dm-ij— Fki’-"—k—J ® dyoﬂ...ﬂdy“ . (121)
3y k ax

which leads to the simple conservation law form

3 oyt

2 _p & _sil=0 , (122)
1)k .k

Ay 9x

where the dummy index of summation jk was replaced by 1. If

zm-fwmu”f)ismﬂMrUudumdmbuthathm H, then .

the same derivation leads to the conservation law form

i m
3_ (r 3y J) 32 _glap , (123)
m k . k i
oz ox ay
which reduces to
3 32" |
—A{F, — (JH);, =0 , (124)
az" { k Bxk ’

where JH 1is the Jacobian of the composed transformation. Thus, as would

be expected from the coordinate invariant formulations from differential



forms, the result is a transformation rule which preserves conservation

law form. From another point of view, Eq. 122 can also be derived directly
from manipulations with calculus on a case by case basis. Ome example is
given in Viviand [24] where Eq. 122 was derived in two-dimensions with xi
as C#rtesian coordinates and y1 as curvilinear coordinates. With the
coordinate invariant formulation in terms of differential forms and the
resulting transformation rule, the remaining question is whether or not
conservation laws exist in a given system. This topic has been examined
by Eiseman and Stome [25] - [27] for both local and global conservation

lave in spaces which can bé more general than Euclidian spaces.

Frame Field Formulations

In a collective sense, a basis of vector fields 1s referred to as a
frame field. For curvilinear coordinates, the fundamental frame field is
the basis of natural tangents (Eq. 3) to coordinate curves since it determines
the coordinate metric (Eq. 7). As the frame field which contains the basic
metric information for the coordinates, we shall call it the coordinate frame.
When curvilinear coordinates are used to obtain a discrete mesh for the numeri-
cal simulatior of a flow field, the coordinate frame is also the frame which
is properly aligned with the discretization. Consequently, in a discrete
analysis, any other frame fields would have to be related to the coordinate
frame. From this vantage point, the contravariant formulation would then be
the most natural one to select since the coordinate frame is used for the
velocity vector, the defiv#tive directions, and the stress temsor. In the
'conrse of a numerical solution, however, the geometric properties of the

coordinate mesh may not bear any relation to the physical properties of the

BRI B8
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flow. For example, if a mesh for a constant uniform flow is chosen to

be rectilinear, to be ﬁligned with the flow, and to expand in the flow
direction, then the natural tangents would also expand in length. As a
result, a trivial flow field (; = const.) is computed with nontrivial
variables (vi). If, in addition, the coordinates were curved and not
aligned with the flow, then the example wﬁuld be even more complicated.

In the example of uniform or locally uniform flow, the errors are clearly
caused by the mesh geometry in the given region. To minimize the errors
due to such an inconsistency between the geometric properties of the mesh
and the physical properties of the flow, frame fields other than the
coordinate frame should be used. In the case with the rectilinear mesh
that expanded in the direction of alignment with a uniform flow, the
coordinate frame can be replaced by a normalized coordinate frame in the
equations of motion. The normalized frame i{s given by the unit vector
fields :1/¢E;1 for each coordinate direction yi. Relative to the
frame, the velocity field is given by solution components which are actual
velocity magnitudes in the respective coordinate directions. Since dis-
crete representations of derivatives will vanish for constants, the uniform
flow field will then be reproduced without an error from the mesh geometry.
In the more complex case where a fully curvilinear mesh is used, the
normalization of the coordinate frame, however, will not remove the geome—
tric error from the mesh. To remove the geometric error, the velocity
should be expanded relative to an ortkonormal frame where one of its ,
constituent vector fields is aligned with. the uniform flow. As before,
the weloeity coefficfents then become’ actual velocity magnitudes in the.

respective directioms and the R - ST
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uniform flow is again retrieved. In flows past isolated airfoils, the

flow approaches uniformity away from the airfoil. For moderate angle of
attack, the approach canﬁbe rather rapid. Consequently, the orthonormal
frame for velocity coméonents can be e#ﬁected to yield accurate results.
Numerical evidence ([28] -~ [29]) supports the expectations. In the

numerical studies, the choice of orthonormal frame was referred to as

the application of Cartesian directions since only a Cartesian coordinate
discription of velocity was used. Form the more general viewpoint, the

frame field formulation was introduced in [30] and the previous Cartesian
frame was called a particular case of a solution frame since the velocity

or momentum components are solution variables and since more general frame
fields are needed for alignment with flows which undergo a change in
direction. Such directional changes commonly occur with cascades of com-
pressor or turbine blades. Within the context of frame fields [30], there
are also derivative and approximation frames. In a number of special cases,
a frame field has been selected to align solution variables, derivatives, or
equations with a given direction of interest. In Jamesou's [31] generaliza-
tion of the type—dependeat differencing due to Murman and Cole [32], a speci-
fic derivative frame was employed. This frame, known as the Frenet frame [1],
consisted of vector fields that are tangent, normal, and binormal to the stream—
lines. The result was called the "rotated difference molecule”. This same
frame was also used for both a derivative and a solution frame by Lakshmina-
raysha and Horlock [33} =~ [34] who applied it to the vorticity equation (for
both statiomary and rotsting systems).. Their analysis consisted of successive
application of dot-preducts and differentfatiom rules for the frame field;

the differentiatiom rules comdisted of the Fremet formulas aleug with



-59-

other formulas for the normal and binormal directions. The results were
a sequence of interesting generalizations of the previous formulations
for secondary flow.

To illustrate the application of frame fields for the numerical simu-
lation of turbomachinery flow fields, a two-dimensional cascade of turbine

blades, depicted in Figure 6, shall be comnsidered.
: . T Ty e

i UPS!iﬂﬂ!l FLOW DIRECTION

css o m mn

------

Figure 6: A Typical Cascade of Turbine Blades

In the figure, a camber curve, denoted by the dotted curve, is illustrated
as an extension of the turbine blade camber line into both upstream and
dowvnstream directions as a smooth curve. In a parallel to the case with
isolated airfoils, the cascade flow field directions should be roughly

aligned with the camber curve tangent for each given xl location.
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Consequently, the field of orthonormal frames consisting of unit normals
and tangents to the camber curve can be expeéted to increase the accuracy
of a numerical flow field simulation. If the camber curve is given in the
form x2 - h(xl) for some function h, then the unit tangent and normal

are given by

21y o oala 4dh Al
and
2 1 - - dh A A }
fz(x ) = A _dxl u1+ Uy s (125b)

respectively for all xz values and for the normalization factor

2
A= ”(ﬂi)} . (125¢)

Of the two possible choices for the normal vector (Eq. 125b) corresponding
to the two sides of the camber curve h, the upward pointing one was
gselected as can be observed from the positive contribution in the Gz
direction. In the compact summation convention notation, the frame field
attached to the camber curve can be writtem in the form %m'- f:ﬁk where
.the coefficients f: are taken from Eq. 125. To relate the frame field

to the coordinate frame, Eq. 30 is applied to yield

£ - :§§ g - (126)

IR
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The inverse expression is obtained from the inverse ﬁi - B:?k to Eq. 125

where the coefficients are found by Cramer's rule to be Bi = B§ = ] and
B% = -Bi = dh/dxl. From an application of the successive inverse

(Bxi/ayr)B? to Eq. 126, we obtain

+> ax  _m 42 :
e = N 1 fm ’ (127)
y

by use of the inverse relationships B?fz - 5: and (axi/ay’)(ayj/axi) - Gi.

With the transformation rule for the frames given by Eqs. 126 and 127, there
is also a transformation for the velocity components in each frame. The
velocity is given by V= vrgr for contravariant components vf and by
V= wmfm for camber frame components w'. A substitution from Eq. 127

then leads to

n axk |

w =y ;—;'Bi . (128a)
y
by linear independence; a substitution from Eq. 126, to
- ek A (128b)

By successive applications of Eq. 128b, the velocity components in the contra-
variant form of the equations of motion can be expressed in camber frame
components W' which are roughly aligned with the flow by constructionm.

Since the solution variables are coefficients relative to the camber frame,

the camber frame is being used as a solution frame in the resultant expressions.

To convert back to the coordinate frame, successive applications of Eq. 128a
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would be required. In the above case, only the solution variables are
given relatife to the camber frame; the derivatives, however, are still
in the coordinate frame as can be observed from the operator form of the
natural tangents (Eq. 97). The derivative frame can also be changed to
the camber frame or any other convenient frame. When the change is into
the camber frame, Eq. 127 is converted into the operator form

m 3

i
T By .- s (129)
z

9 3x
Byr

9y

where z® are local coordinates about any fixed point which has the
camber frame as its coordinate frame. By substitutionms from Eq. 129,
all derivatives can be expressed in camber frame directions in all possible

equations. When the substitutions are made, a conservation law form
(130)

is preserved only when the conservation law preserving transformation

rule (Eq. 122) is applied to yield

3 2zt
_i{ck_ka;- o , (131a)
9z dy

where

3z"

g - dec(ﬁﬁ) = det (f: §§) , (1311:)'

"the last equality of which comes form the operator form of Eq. 126. When

“the transformation rule is originally applied to preserve conservation law

nyr



form (Eq. 117) for a change from Cartesian coordinates xi into curvi-

linear coordinates yJ, the fluxes in Eq. 130 are givenm by

k
9 cam x
G, =F, 2L g3 (132a)
k h | 3xj ’ .
where
(132b)

J= det(

ayj)

from an observation of Eq. 122. On substitution, the conservation law

form then becomes

3__ t(g _alli J)_a_Z_i a'} =0 (133)
3zt (\ 1 oxd Jayk l
|
|
or
1
3 3z } '
2 _lp 2 gl -0 . (134)
az1 { 154

A gimplification can be obtained from the product rule for determinants

vhich on application to the product in Eq. 134 yields

k-gzi) - det(G:f:)- det(ﬁi) -1,

-dt(ayj

where the last equality follows from Eq. 125. From the operator form of

Eq. 127, the derivative of z1 in Eq. 133 is given by

r
o= ?ix_k pl (136)
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with a change of indices. By substitution

A TS S S (137)

a
ay* 3xjaykr 3t

k
_3___ 9y
axd - axd

When the expressions from Eqs. 135 and 137 are inserted into Eq. 134,

the conservative form reduces to

| -
1 leni o, (138)

where the derivative with respect to zi 1s related to the operator form

of Eq. 126 which, for completeness, is given by

d k 3y" 3 k 3
= f = f . (139)
Bzi 1 Bxk Bym 1 Bxk

with an interchange of the dummy indices i and m for the first equality
and an application of the chain rule for the second. On examination of

Eqs. 138 and 139, the conservation law form preserving transformation rule of
Eq. 122 could have been established for frame fields and applied directly.

In the case just considered, the transformation between two orthonormal
frames had a determinant of unity (Eq. 135), as could be expected for such

transforﬁations which are either just ivolutions or rotatioms.

tE
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The Approximation Frame

In addition to the solution and deirvative frames, an approximation
frame has been derived [30] to unify the class of unidirectional flow
approximations wﬁichriead ;6 épafial marchiné aléérithms for tﬁérNavier-
Stokes equations. Thé class of approximations had developed over the
paat'decade [35] - [47] as a means to study three-dimensional steady-
state flows (incompressible, compressible, subsonic supersonic, etc.)
in cases where the flow was assumed to be unidirectional. A motivation
for this assumption was derived from the experimentglly observable fact
that without abrupt changes in geometry a high Reynolds number flow is
dominated by only upstream conditions. Here, small disturbances in the
primary direction tend to decay quicily. Consequently, a suitable approxi-
mation can and has been assumed to produce a well-posed system of govern-~
ing equations from which a stepwise integration can sﬁcceasfully be applied
to a given set of initial conditions. The rate of success with numerical
computations tends to support this assumption. As ;n boﬁndary layer
theory, the approximations prior to the approximation frame were obtained
by an examination of the relative order of magnitude of each term on an
equation by equation basis. Unlike boundary layer theory, these estimates
only neglected the diffusive flux in the assumed primary direction. The
net result was that the approximate governing equations contained the in-
formation which was necessary to accurately model secondary flow phenomena.
In addition the approximations, although similar in concept, were each
different; the primary differences came from the chosen system of conserva-
tion laws (e.g., the transport of momentum, vorticity, emergy, etc.) and

from the geometric properties associated with each particular problem.
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These differences also pointed to the fact that each of the order of
magnitude approximations were too specialized to obtain an approximation
which was valid for all cases where a primary flow direction exists.

The physical properties, associated with a primary flow directionm,
depend upon the fundamental constitutive relationship of a fluid. For
this reason, the approximation presented in [30] was a direct approxima-
tion of the stress tensor which was clearly a statement about the consti-
tution of the fluid. Consequently, such an approximation is independent
of the choice of basic conservation laws governing transport phenomena.
Moreover, the approximation is performed in a manner which preserves the
tensor character of the stress. Consequently, the approximation 1s also
independent of coordinates. In this manner, the limitations of the order
of magnitude approximations are overcome. With the added generality, it
should be noted that some terms of negligible size are retained. However,
benefits from the added generality can outweigh by far the expense of in-
cluding these terms. Such benefits are reflected in the wider range of
applicability for a specific algorithm and in the quality of an approxima-
tion which can easily be increased because of the added flexibility.

To suitably approximate the stress tensor, only the viscous part will
be considered since it is the diffusive fluxes which are to be approximated.
For subsonic cases, the remaining part of the stress temsor (the pressure’
field) must be treated carefully. This includes cases where there are both
subsonic and supersonic regions. Omn the viscous stress; the approximation
frame is used to determine which parts are to be removed; hence, which parts
should contribute little to a flow with an assumed primary direction. To

start the comstruction, this direction is assumed to be given in the form of
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of a vector field 33 which identifies a primary direction at eéch spatial
point. Then 33 can be extended to an orthogonal triple of vectors Ei, 35,
33 to form a frame at each spatial point. This extension must be accomplished
in a smooth enough fashion over the vholerflow field so that at least one
continuous derivative can be taken. The required differentiability occurs
because of the requirement to differentiate the components of the stress

tensor as they would occur in the conservation laws for momentum, vorticity,

or energy. From the comstruction, a smooth field of orthogonal frames is
obtained such that 33 is aligned with the assumed primary flow direction

and 31, 32 span orthogonal transverse plamnes. Altogether, this is the
desired approximation frame in which a differential viscous stress cube can

be formed at each spatial point. An illustration is given in Figure 7 where

the tensor components -Udj = cij &‘i @-&'j are displayed for the viscous

part of the stress tensor O which is given by
g = gt 31® 31 (140)

in the approximation frame temsor product basis. The resulting components

of viscous stress on a cube surface are either aligngd with or are ortho-
gonal to the primary direction. Comsequently, the force balances represemted
by the Navier-Stokes equations are effectively separated into three mutually
exclusive direcﬁions so that approximations in any given direction do not
directly affect other directions. That 1is, a force in any one of the direc-
tions does not project nontrivially onto the other two remaining directions.
If the equations of motion were writtem for the isolated cube, then the stress

components would only contribute to the force balance in their respective
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directions. However, in the primary direction‘ 35, the viscous contri-
bution 033 is expected to add little to the strong convective forces;
héﬁce, this contribution is ignored, and as a result, the a3-d1rection
momentum balance is not elliptic in character. In additiom, for the 31
and 32 directions the contribution of the viscous shearing stresses
031 and 632 are also small relative to convective forces; hence, they
also are ignored, and as a result, the respective momentum balances each
are not elliptic in character. By contrast, the symmetric counterparts
013 and 023 each add to the force balance in the primary direction, and
since they are the primary mechanism for the viscous retardation of the
flow they are significant; hence, they cannot be neglected. Due to the
orthogonality of the approximation frame, the force balances are mutually
exclusive. Moreover, by joining existing cubes along transverse faces,
effectively longer and longer viscous stress cubes can be formed. On a
differential level, this is possible since the total assumption is that
viscous forces on transverse faces are negligible. As a conceptual device,
these forces can be considered on a fiberlike object which is aligned with
the assumed primary direction. From this viewpoint, only internal viscous
forces within the fiber are neglected. That is, the fiber has no stiffness;
therefore, the only balance against the convgctive forces is due to the
shearing stress along its boundary. This 1s particularly appropriate when
the fiber is in the boundary layer since a no-slip condition causes the
fluid to decelerate from viscous forces and come to rest at the walls (see
Fig. 7).

In the approximation frame, the approximation of the viscous part of

the stress tensor is given by the assumption that the components 031 are
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negligible relative to the convective forces for j = 1,2,3. When the

assumption is applied, the approximate stress tensor 0 1s expressed

by

Ql
[}
Q

3, @8, - a-shotd 3 @3, . (141)
Unlike the original viscous stress (Eq. 140), the approximation (Eq. 141)
is not symmetric, as could be expected from the directional bias. .When
the approximate stress is used in place of the original stress, unidirec-
tional viscous approximations are obtained for the conservation of momentum,
energy, and vorticity. A unidirectional system of governing equationms,
obtained from the approximate stress, is not elliptic and can be solved
by a forward marching procedure. In cases involving subsonic flow, the
elliptic character which has been removed must be replaced. The replacement
can be in the form of viscous perturbation pressure field for a known marching
direction pressure gradient (e.g. [39]) or in the form of an iterative cycle
where a simple elliptic potential equation is solved by some efficient
elliptic solver and the viscous unidirectional equations are spatially
marched (e.g. [42], [43]). In the latter case, the velocity is split into
rotational and irrotational parts and the pressure is defined solely in
terms of the irrotational part. In the former case, the known pressure
gradient is often taken from secondary flow theory [33] - [34].

Before the spproximation as presented in Eq. 141 can be applied, it
must be put into a form which is consiatént with the chosen system of comserva-
tion laws governing the transport phenomena. Within the comservation laws,

the stress tensor is usually expressed in component form where the components

T
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are the coefficiénts of the stress in a tensor product basis determined
by some frame field B, B,, §,. This frame field would probably be the
solution frame to be compatible with other parts of the momentum balance.
To achieve the desired ;;nsistency, the stress components must be taken
from the B-frame, transformed into the «-frame, approximated in the
a-frame by Eq. 141, and then transformed back into the B-frame so that
the results can be used. For notation, let wij be the coefficients of
the viscoug;part of the stress temsor in the B-frame, let 35 - riﬁi

be the transformation into the a-frame, and let 3; =- G:ak be the in-

verse ttansformﬁtion back into the PB-frame. With the given notation, the

transformation into the a-frame is given by
i +
VP8 @B - w3, ® 3, . (162)

from the linearity properties of the temsor product (Eq. 25). An applica-

tion of the approximation from Eq. 141 with cij = wka:Gi then yields

> 2 '
3= (-8l 3 @ 3, - 12-:1 wgled 3, @3 . 143

When the transformation back into the PR~frame is applied, the approximate

stress becomes

(144)

2 ‘ - |
= Lw%clrE @8, = (5[ -6 v 3. @8, .



An illustration of the approximation procedure is given in Figure 8 where

the basic approximation is seen to be performed in a lifted space.

APPROXIMATION FRAME
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Figure 8. The Unidirectional Approximation to the Viscous Stress

The coefficient from the last equality in Eq. 144 1s the viscous stress
appfoximation in a form that can be directly insert§d into a governing
gystem of fluid dynamic equations to tha:l.n a unidirectional approximation.
For example, if the f+frame is just the coordinate frame, then the uni-

directional approximation to the contravariant conservative form of the

momentum equation (Eq. 108) is given by

2

13, 13, csd_ c3ply k] 3 -
- [pvvj+g p+(5k'-G:l73)w E} o, (145)
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for a suitable choice of vector field 33 that defines the primary flow
direction.

Several applications of the approximation can be mentioned. 1In each
case the central part is the selection of a vector field which adequately
defines a primary flow direction. Since the most accurate approximation
would result from the velocity field itself, this is a natural selection.
One procedure would be to directly use the Frenet frame for the streamlines.
This is also the closest approach to the secondary flow equations as pre-
sented by Lakshminarayana and Horlock [33]. However, the Fremet frame is
not always well-defined. Certainly problems would arise when the stream-
lines inflect or have local regions of uniform flow. Each of these possibi-
lities would cause the Frenet frame to suddenly change orientation or lose
the distinction between unique normal and binormal directiong. As a result,
the desired continuity of the frame would be lost in such cases. Conse-
quently, a preferable method would be to use the velocity field and to con~
struct a differentiable orthogonal frame around it. Thisvcould be chosen
to coincide with the Frent frame in certain regions. Alternatively, the
priamry direction vector field could be selected as some approximation to the
viscous velocity field. For example, the directions from an inviscid poten-
tial flow solution could be used. Often the potential flow directions are
Just the tangent véctofs to the steamline family of coordinate curves in a
potential flow coordinaté system, Moreover, other primary directions can be
selected as tangent vectors to some given family of coordinate curves in some
 other system of coordinates. When this is done, the approximation is indepen-
dent of the remaining directions. In particular, a transverse face of the

.stress cube is not aligned with the tangent plane to the transverse coordinate



4=

directions, unless the system 1{s orthogonal. Since only one family of
coordinate curves could be uged, a more general approach would be to
generate a suitable family of curves that are aligned or approximately
aligned with the flow direction. When vertically translated versions of

the camber curve (Fig. 6) are considered, an approximate alignment is
obtained for cascade flow fields when they are viewed as channel flows

with a third slab symmetric dimension. In the cascade example, the approxi-

mation frame would be given by

(146)

where ?1 and %2 are given in Eq. 125 and ;3 is the approximate primary

flow direction.

NUMERICAL METHODS
Overview
When the form of the governing fluid dynamic equations is selected for
a given problem, the next step in the process of numerical flow field simula-
tion is to select a suitable numerical method which in turn may depend upon
the form of the equations. The choices that are available extend over a broad
range. There are explicit and implicit finite difference methods, finite

element [48] and finite volume ([49] - [53]) methods, collocation plecewise
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polynomial methods ([54] - [56]), spectral collocation and Galerkin

methods [57], box [58]‘and higher order box [59] methods, operator

compact implicit methods [60], flux corrected transport methods ([61] -

[63], monotone methods ([64] - [65]), random choice methods ([66] - [67])
éype-dependent methods ([31], [32], [51]), artificial compréssibility methods
([68] - [69]) inflation and continuation methods ({70], [71]), approximate equa-
tion coefficient methods with locally exact solutions ([72]- [73]), adaptive
methods with and without a fixed number of mesh points ([74] - [82]), multi-grid
methods ([83]- [89]), asymptotic methods ([90] - [92]) and other methods which
are usually variants or combinations (e.g. [93]-[95]) of the methods listed.

" For general references, a survey of many of the methods can be obtained from
an examination of the recent proceedings for the AIAA Computational Fluid Dyna-
mics Conferences, the International Conferences on Numerical Methods in Fluid
Dynamics, and the von Karman Institute Short Courses on Cdlputationnl Fluid
Dynamics.

Rather than a comparative presentation of the various methods, our
discussion will be limited to a specific class of techniqﬁee which are use-
ful for many of the turbomachinery problems where Mach number ranges usually
extend only into the low supersonic region. Turbomachinery flow fields,
as internal flows, are non-trivially bounded above and below by solid
objects. Specifically, for cascades of airfoils, the flow region is
multi-connected which is more complex than the channel flows which are
sometimes used as an approximation to avoid leading and trailing edge
analyses for each airfoil or blade shape. Along the solid -boundaries for
the internal flow problems of turbomachinery, no-slip bqundary conditions
must be applied whenever a numerical simulation of a viscous flow field is

attempted. As a consequence, there is a singular perturbation problem for
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the boundary layer which is especially acute for high Reynolds number flow.
When the flow region is discretized, the boundary layer must be resolved
with a finely spaced mesh, for otherwise, accuracy is lost. The finely
spaced mesh, however, c#uses éhe CFL stability limit for explicit finite
difference methods to be overly restrictive om the permissable time-steps.
Such a restriction is particularly troublescme when time-dependent equations
are solved with the intent of converging upon the steady state flow field
as rapidly as possible. The time-step restriction means that the steady
state solution can only be obtained from a large number of time-steps

which implies that a large amount of computation must be done. Vector
computers, hawever, are most efficient with explicit numerical methods, can
rapidly perform a large number of computations, and thus, would tend to
offset to some degree the effect of the stability restricted time-step. In
addition, the development of multigrid techniques would be helpful since
the aggregate amount of computational work would be limited by shifting to
coarser grids when finer grids would not gubstantially improve the solutiom.
The saved work comes from the use of a sequence of coarse grids which have
substantially smaller numbers of mesh points omn which computations are
executed. Most successful applications of the multigrid methods, however,
have been in cases where the grid sequence is composed of Cartesian grids.
Such a sequence can be used for curved boundaries when boundary interpola-
tions are applied,to local coordinates. To avoid the complex organization
and manipulation of the data, a sequence of grids derived from curvilinear
coordinates would be helpful. Some successful results have been obtained
[89]; however, the general combination of multigrid methods and curvilinear

coordinates needs further development. For the complex geometric

in 2
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configurations which occur in turbomachinery problems, the application

of curvilinear coordinates is essential to obtain a well-ordered numerical
algorithm which can match the geometry and Fhe solution gradients. To
avoid the explicit stability restriéﬁion, implicit methods were developed.
With implicit methods, the numerical solution can be stably computed for

a much larger time~step at a price of more computation and storage per
step. When an alternating-direction-implicit (ADI) splitting is applied,
computational efficlency per step is increased beyond that for a pure
implicit method. Relative to explicit methods, the ADI methods will more
rapidly converge to a steady state flow field. Consequently, our dig-
cussion will primarily be centered upon ADI methods. Since the motion of
a viscous fluid is described by nonlinear equations, a key part of an
implicit method is the treatment of the nonlinear properties of the equa-
tions. The earliest treatments involved an iteration cycle which was
costly. Later, Lindemuth and Killeen|[96] discovered that temporal accuracy
did not deteriorate with a linearization, and consequentl}, they deviséd

a non-iterative algorithm. Subsequently, the non-iterative technique

was applied by Briley and. McDonald [97], was mathematically analyzed and
extended by Beam and Warming ([22], [98}, [99]), and was applied to isolated
airfoil problems by Steger [29]. Im addition, MacCormack included an
implicit step to devise a rapid solver |[100] and Ballhaus,‘Jnmeson, and

~ Albert [101] and Holst [102] each considered extensions to transonic flow.

The General Initial Value Form
All of the initial value formulations for viscous gas dynamic problems

can be written in the general form
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SE— - Fi ’ (147a)

where t 1s a time or time~like variable (as in spatial maching techniques)
and where Hi and Pi independently depend on t, the spatial coordinates,
the solution vector, and derivatives of the solution vector. Imn a compact

notation, the functional dependence is given by

k
Hi = Hi(T’Y’ -Pr)

F, = Fi(r,yj,pl;) (147b)

where the indices j,k are assumed to vary over their respective ranges
and wvhere r 1s assumed to be the multi-index (rl,rz,...,rn) which

corresponds to

1 n
k ] ) 3 k
9y Iy 3y
for the solution variable uk when L= rz = ...=T = 0 and

(r1+-r24- evs * rn)th ordef derivitives when one or more of the indices

rj z.b is sftictlyrﬁositive. In anticipation of chain rule expansioms,

the partial derivative of Eq. 147¢ with respect tora solution variable u™

is given by the differential operator

k r
o 1 2 n
—=. 5:(—3—1—) (3—3) (3—;) . (148)
2u oy dy ) 4

Ty



-79-

To see how this occurs, the time-like derivative of Eq. 147c 1is directly

computed to be

k ) o r r o
i‘iz.a_(_a_.)l (_a__)“uk_-(a_)‘ a_)“ﬁ
at ot ay1 ayn ay1 ayu ot
: (149)
. r r k
k/9d 1 ] B oo™ apr du
® Gm 1 " n 3t ..om ot *
ay oy du

where the second equality 1is due to an interchange of the order of differen-
tiation; the third, the definition of the Kromecker delta; and the fourth,
the operator from Eq. 148. Unlike most forms of the chain rule, the order
of the factors in the result of Eq. 149 is important since the operator of
Eq. 148 must be applied to the second factor for each m as m 1s summed
over its range.

From the chain rule, the general system of Eq. 147 can be rewrittem so
that the time or time-like derivative is explicitly appliéd to the solution

variables u". In the explicit form, the system becomes

oH m oH
i du i
R T T (250a)
where
M, oW, dpr
iy (1500)
pr
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{s the Jacobian of operators and where the partial derivative of Hi

with respect to t comes from the t-dependent solution independent
parameters that, for example, can arise from t-dependent geometry. 1f

the Jacobian is nonsingular as a linear transformation, then the time-
1ike derivatives of the entire solution vector can be obtained by a

direct solution. Otherwise, a constrained system of lower rank must

be considered. Under a change of basis, the explicit form of Eq. 150

can often be rewritten in an equivalent form where the Jacobian (Eq.

150b) is represented by an operator matrix with M 1linearly independent
rows and N-M rows of zeros where M 1is the rank of the Jacobian and

N 1is the total number of rows (and colums). The last N-M rows of
transformed equations correspond to the nullity of the Jacobian and

hence involve no time-like derivatives. Consequently, the last N-M

rows are viewed as a set of constraints which can be used to eliminate
therlast 7N—M components of the solution vector in the first M equationms.
Tﬁe constraints are in the form of Eq. 150a with a vanishing left hand
side. When the equivalent form exists with constraints, the original
system of N equations in N unknowns has been reduced to another equi-
valent system of M equatioms in M unknowns. Such an original system
can be called a reducible system in correspondence with the matrix termi-
nology [103] which is a direct parallel since a discretization of the system
would lead to reducible matrices. If the system is reducible at each point
(t,yl,...;yn)fby a sufficiently smooth basis transformation, then the
system can be called a golvable system. Only solvable systems shall be
considered; moreover, without loss of generality, we caﬁ assume that the

Jacobian (Eq. 150b) is nonsingulaf, for otherwise, the reduced system would

11
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just produce a smaller equivalent system that is nonsingular and could
be solved in the same manner. With the assumption of solvability, an

inversion then yieélds

Dk

k
du_ _ ki
7 A {Fi-—} . (151)
where the matrix (Aki) is the inverse Jacobian and the notation Dk
is introduced to denote the value of the t~derivative of the kih solu-
tion vector component that is directly determined by the system of partial

differential equations.

Linearization in the Time-like Variable

When the system of partial differential equations (Eq. 147) 1is to
be solved by a non-iterative numerical method, the equations must be
linearized in some fashion. Moreover, on examination of various lineariza-
tion strategies, corresponding numerical methods can be dérived by direct
integration and by finite differences to yield both implicit and explicit
algorithms. To simplify the notation in our examination of linearization,
at least initially, comsider the scalar ordinary differential equation

Pt (152)

where the only possible'nonlinearity occurs In f and where a solution
u(t) 1is desired when u, = u(tn) is given and ¢t > tye From the first

two terms of the Taylor series expansion of £, Eq. 152 can be approximated

by
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(3—:)‘ £+ ( )(t t) = (gi) (du) (t-t) (153)

where the subscripts n denote evaluations at ty and the error of
approximation is of order (t- tn)z. When the derivative of u at n
is expanded in the forward difference form

u-2u

du n .
(E) =TTt -, (154)
n n

and second order terms in (t- tn) are neglected, we obtain the implicit

approximation

du d

it f (d)(u u) ’ (155)
which still deviates from Eq. 152 by only second order terms. If, in
addition, the remaining derivative of u were to be replaced by the back-

ward difference (u- “n)/ (t-t n), then the resultant equation would be ob-

gserved from Eq. 154 to deviate from Eq. 152 by first order rather than

second order terms. However, without a decrease in accuracy, a direct inte-

gration of the implicit linearization of Eq. 155 is always possible and the

result is given by

A(t-t))
n -1
u-un+[e -IJA fn .

where (156)

df '
A= (E) .
n

Ty
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Moreover, in the special case when f 1s linear, the solution is also

the exact solution of the original equation (Eq. 152). The special

linear case is also easily seen to include constant coefficient linear
systems by a parallel development. In the general nonlinear cases, the
exponential character is clearly contained in the integral (Eq. 156) of
the implicit linearization and thus, the scheme is well-aligned with the
local solution growth. By contrasi, the exponential character is only
evident in an approximate sense for explicit forms. A second order expli~
cit approximation is obtained from a substitution of the original equation
(Eq. 152) at time t into the Taylor expansion of Eq. 153 to yield the

linearization
QUL & (4E) £ (e-t) (157)
uj n n !

which upon integration becomes

2
(t-t)
df n

u= un + [(t— tn)+ (E)n T ] fn

(158)
Az(t-tn)z -1
- un+ [A(t—tn)+ T—]A fn .
By comparison, the bracketed expression in the second equality is just a
third order approximate of the exponential character in the implicit form
of Eq. 156. Unlike the implicit form, the explicit scheme does not repro-

duce exact solutions to linear constant coefficient equations; but instead,

it gives approximations where the error is of order '(c-tn)3.
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In continuation, higher order linearizations can be obtained by

the inclusion of more terms in the Taylor seriés expansion of f and

as a result, higher order explicitrand implicit schgqggrcan be systema—
tically developed. As the terms are added, however, there 18 an increase
in the number of possible schemes at each accuracy level since there is
an increase in the number of choices for and between finite difference
and equation evaluations (from Eq. 152) for substitutions into the Taylor
expansion of f. To illustrate the development, consider the third order

accurate approximate equation

2 (e-t)?

2 2
du (df) (du) [d £ (du) df d“u}
—_—f + (= —_— (C— t ) + —— = + == . (159)
dt n du) \dt] n qul \dt du dtan 21

When implicit forms are desired, the gsubstitutions are constrained by the
requirement that linearity must be maintained at the implicit level. 1In
Eq. 159, the disallowed substitution is a forward difference for both fac-
tors in (du/dc)2 which would then produce a squared implicit quantity.
The alldwable choices are then selected from all other combinations of
forward and backward differences and evaluationg of Eq. 152 which upon
substitution maintain the third order accﬁracy of Eq. 159. The required
accuracy here, is only first order since the term in question already con-
tains the factor (t-tn)z. Also to maintain accuracy, (du/dt)n in the
(t-?tn)-tetm must be evaluated from Eq. 152 or be approximated with a
secon& order finite difference. With these conmsiderations, fourth order
implicit schemes can be obtained. With the same accuracy considerations,
fourth or&er explicit schemes can also be obtained. As an example, consider

the explicit scheme derived from only direct substitutions of Eq. 152 into

N B
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Eq. 159. From Eq. 152, we have

2y _ df _ df du _ df

d"u
g2 4t " dude duf > (160)

which, along with Eq. 152, is inserted into Eq. 159 to yield

2 (t- t:n)2

2

du df a2 (af

du | ¢ +<du f)(t-tn) +[ £+ (du) f] — . (161)
a du n--

A direct integration then yields the scheme

i 2 3
(t-t) 2 27(t-t)
df | n d°f df n
u = un +{(t-tn)+(dui)n 2 +[ 2 f+(du) L 6. }fn - (162)

When f = du for some constant «, the scheme of Eq. 162 becomes

a?(t- 1:n)2 @3- tn)3
u= 1+a(t-tn)+ 3 + 3 S (163)

which is just the first four terms in the Taylor series expansion of the

analytic solution u 2(t-ty)

n of the original equation (Eq. 152). When

f=1+ uz, the original equation is nonlinear and the scheme of Eq. 162

becomes
- 2 2_ 1 3) 2
u=u + f(e-t)+u (-t )"+ (u +3)(e-¢t) $(1+ u) . (164)
For - 0 and u, = 0, Eq. 164 is easily recognized as the first four

terms in the Taylor series of the known solution u(t) = tan(t) when the

initial condition u(0) = 0 1is applied to Eq. 152. In each case and in
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general, the explicit scheme of'Eq. 162 would deviate from analytic solu-
tions to Eq. 152 by a fourth order term. To evaluate Eq. 162, or indeed
aﬁy of the schemes generated from linearization strategies, a stability
analysis would be required in each case. For linear cases, complex
exponentials are inserted into the schemes so that an amplification factor
can be bounded (often leading to step size 1imits) and examined for both
dissipation and phase errors (as plotted in [22], for example). In non-
1inear cases, there is usually an intuitive extrapolation from the linear
analysis applied to a local linearizationm. Alternatively, energy methods
can be applied’ (e.g. [104]) when the analysis is tractable. Altogether
however, the stability analyses can be very complicated and, for nonlinear
problems, often produce 1imited information. As a coarse rule of thumb,
implicit methods are usually more stable than explicit methods. As a com-
sequence the methods of linearization considered on the scalar equation
(Eq. _152) will be applied to the general system of Eq. 147 to develop a
general Crénk—Nicolson scheme. Other schemes could also be obtained in

parallel to the scalar case but will not be pursued here.

A Crank-Nicolson Scheme

The numerical scheme that is developed here is an extension of the
classical Crank-Nicolson scheme to cover the general equation form given
by Eq. 147 and to still maintain gecond order accuracy. In the well-centered

framework of Crank-Nicolson we have the second order accurate scheme

;4 - (H

n+1

)
i‘n
- = (Fi)nli s (165)

13
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where h =t . - tn and the subscripts involving n will denote levels
of t rather than a spatial dimension as in Eq. 147. No confusion will
result, however, since spatial dimensions are implicit in the summation con-
vention and do not appear explicitly. To extract the solution vector and
to develop the noniterative implicit scheme, a sequence of linearizations
must be applied to both sides of the Crank-Nicolson statement (Eq. 165).
The same considerations as in the scalar case of the previous section will
apply. From a Taylor expansion of thé right hand side about level n, we
maintain accuracy by setting

aF, ariﬂﬁ .

(F) = (F,) +y7m—+—T 5
1/n+d 1i‘n ot 8p: 3R 3t n 2

(166)

where the chain rule (including Eq. 149) has been applied. The n-level
evaluations in the first order piece are straight forward with the exception

of the quantity (Bum/at)n. This can be evaluated either by a finite

k of Eq. 151.

difference or directly from the differential equations with D
If the latter approach is taken, then the fundamental implicit part of the
basic Crank-Nicolson scheme 1s lost. Thus, a finite difference shall be

ugsed. Since the term itself is first order, the simple first ordef forward

difference is sufficient, and the expression becomes

k
oF aF, 3p
i\ h i T m m
(F,) = (F,) +(—) —+(——)(u -u) , (167)
1ot i‘n oT a 2 ap: 3l A o+l n

where the order of the factors in the last term is important since (8p:/3um)n

is a differential operator (Eq. 148) acting upon the solution vectors.
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On the left hand side of thercfank-Nicolson scheme, a difference
quotient of fluxes must be evaluated with a maintenance of second order
accuracy. To initially avoid the explicit appearance of differential
operators, the chain rule expansion of Eq. 149 will be reserved until a
Taylor expansion of the difference quotient has been completed. The

expansion with second order errors is given by
(H,)_,, - (8,)_ [ oH, oH, 3p"
i'nt+l i‘n i . i + i 'r
h “\ot T \oT k ot
n+k apr otd

2 2 k
s d “1} . (3m b 3°m, (apr)
9t 2 dvat| lap: 2 ap‘:ac 2\t Jo

. {aui+% [azuhazui ap’:Hn

2 L 3t
ps

9t 3T3d
%, . a%m, a%m, ot apt
8 r
+ _'{*E[ %t Tk %3 ] 3t (168)
dp 3T  9p 3P, , o+

(ani . azai) (h 2%, ) (ap")
aT 2 2 2 L at
3t /n 9Tdp n

. 8§ 1

L
(ani . o%m, ) (ap‘:)t (h a%m, ) (Bps) (31:1:_)
+{— + 2——) \z— + |3
Bp: 2 ap:ar at /ntd 2 8p:3p: 3t [,\3¢ ntd

' n

o), b2, (), ., b))

Ly
a ot k-

where, for notational convenience,
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T
i ot 2 31'2
b3 - b azni
12 2 3
dtdp, (169)
2
r 3H, .k 3°H,
Cik k"2 k
apr ap ot
) o
and ZH
A Sl
12k 2 apl:apz

The time-like dependence of solution independent parameters outwardly

enters the scheme through the derivatives with respect to T which was used
in place of t to separate the dependence in question from the general t
dependence. Such parameters, we recall, can come from t-dependent geometry
which leads to t-dependent metric data (eg., Eqs. 85-86) or equivalent data
(eg., Eqs. 122 and 138). The derivatives with respect to T occur only in
the coefficients a, b:ﬁ’ and c;k. When the t-dependence occurs only in
um, the coefficients a, and b:ﬁ both vanish and» cik reduces to the
Jacobian transformation of Hi with respect to p:. The expression of dizk
is independent of T-derivatives and is easily identified as the Hessian of

Hi with respect to both p: and pﬁ which is scaled by h/2.

A direct evaluation of the (n+#)-level derivatives in Eq. 168 from Dk
in Eq. 151 would lead in general to a nonlinearity at the implicit level. The

nonlinearity is clearly avoided, however, with the finite difference formula-

(’»‘:) (av‘:) (a) o) (%ars” e 170
ot n"'i aum o ot n"'i (auﬂ)n ( h ’

.

tion
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which is second order in h because of the central difference. The first

factor is now a differential operator (Eq. 148) acting upon the difference

um - m
ntl ~ Yn
h

n

quotient. Upon substitution, Eq. 168 becomes

_(H

) ) 2 : L\ o k
Vet T - (a ) + (bs ) (ﬁ’g) + (cr +4°F aps) %P,
- 1) *Pa) \or ) Tt ke T ) m

(2

(171

where it remains to determine the n-level t~-derivatives in a manner which

preserves second order accuracy.

oyl
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Since both b8 and a3  are first order in h, the evaluation of the

12 12k
respective derivatives need only be first order accurate. While the
choice for the b:z has no further constraints, the choice in the d:;k
term must also be restricted to explicit evaluations, for otherwise, a
nonlinearity would result. With a forward difference, the nonlinearity
would occur in the form of quadratic terms in the solution variable which
is the same problem that occurred in the discussion of Eq. 159. Conse-
quently, the simplest options are either to use a backward difference to
time level (n-1) or to directly replace the derivative with an evaluation

from Eq. 151. To avold the extra storage that would result from a three-

level scheme, the second option will be used. When, in additiomn, a

forward difference formulation (Eq. 170) 18 used for the bi

2 -term, Eq.

171 becomes

' ' k m m
m,) - (H,) op (u -u
i’o+l i’n r r sr L T otl n}
= @y * Gytentdindn T R ) (172
h du
where

£

&

aud

is not a differential operator but is instead a function determined by the
application of the differential operator represented by its first factor
(Eq. 148) to the jth solution derivative Dj obtained from Eq. 151.

On re-examination of the b:z—terms,we observed that there was some

_ degree of choice in the evaluation of the t-derivative. This degree of

freedom can be used to advantage. For any coefficient operator eim that
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is first order in h, we have second order relatiom

m Yo+l ~ “:
(e, ), [®), - (—h-—) =0 , (173)

which can be added to Eq. 172 without a change of order. From the additiom

the difference quotient in Hi 1is then given by the expression

k

ap T T
m r r sr L. °r n+tl n
(ai)n + (eimD )u + [(bik+ c1k+ dﬂst) —aum - eim]n (—h-) . (174)

When m 0, the effect is to represent b:k - terms with finite
differences; when en = bzk(ap:/au“), the representation is entirely an
explicit evaluation. Moreover, the selections for em can be used to
shift any number of terms between ihplicit and explicit levels. The reasons
for such a shift can arise from some favorable stability or matrix inversion
property or from some simplification in the solution procedure. The effect

of the shifts is to be viewed within the context of the extended Crank-

Nicolson scheme which on combination of Eqs. 165, 167, and 174 is given by

k .

oF_ \ 9p
r T st L h 1 r . m m
[(bik+ URATIA M 2 k) o~ i (oap T V)
9p,./ du in
oF \
h 1 _ .. o
= h[F1+2 e ai emD o . (175)

On examination of the coefficients_(Eq. 169) fog the scheme, the shifts can-

_ not be used to eliminate the implicit level Jacobian transformation operator
(Bﬂilaum) since it is independent of h while em is first order in h.

For the same reason, the t-derivatives of parameters (Bﬁilar) also cannot

ny
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be shifted. When there is no shift between implicit and explicit levels
and when H1 and Pi depend upon t only through (p:), the general
Crank-Nicolson scheme reduces to

2. k
{& h[nl 3°8, 9F, 3p_

+ Ll W -u™) = h(F,)_ . (176)
u™ 2 au“au‘ ap: u™ ]}n o+l m 1'n

Moreover, when Hi = ui, we have

oF apk
i h 741 r m _om
{Gm "2 .k m} (un+1 un) h(Fi)n ’ (77)
apr du n

which 1s the standard form of the Crank-Nicolson scheme. In a parallel
manner, the same formalism can be applied to obtain a wide variety of schemes
for the treatment of the t-dependence. In particular, when the Crank-
Nicolson centering is replaced Sy a variable balance between levels n

and n+1, as in [105], the same derivation will work simultaneously for a
group of schemes.

To implement the schemes, the spatial derivatives must be evaluated in
some fashion. The simplest evaluation is accomplished with the use of
central differences for interior points and one-sided differences for
boundary points. For any function f(t,;) and for a constant mesh increment
ij; let Ei be the operator which replaces the component yJ by
yJ + kt\y'1 in the evaluation of f. Since mesh data 1s assumed only at
integral values of Lk, half point evaluation operators will be taken as '
averages so that, for gxample, Ei - (Eii-E%)/Z. Now let A:l be a difference

operator that is defined on the entire mesh by the central difference
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. S-S
A I; ij , (178a)

when ; is an interior mesh point and by

o voed - o

h |
A = , (178b)
y 287
and
g, 3 - a3, + B,
A+ = = , (178¢)
y szj

when ; corresponds respectively to the mesh points with the smallest and
largest values of yj which defines the lower and upper boundaries of
constant yJ. ‘A replacement of each differential operator (a/ayj) by

A:I in Eq. 148 then yields a second order accurate finite difference opera-
tor which upon substitution into the general Crank-Nicolson scheme (Eq. 175)
leads to a second order difference scheme when boundary conditions are in~-
serted. Altermatiwe forms for discretization include higher order differences,
Padé formulas.[103], box schemes [59], and variable difference oberatotd [22}.
With collocation or Galerkin methods, both pilecewise polynomial ([54] - [56],
[951,-E§8})~¢nd spectral neChdds-[571 can be used to represent the solution

u: Tather tham the operstors.

Alternatigg:hirectioﬁ-lqpligit‘Héthods

On discretization, the general numerical scheme (Eq. 175) reduces to a

linear algebraic system of the form

{A+hB }$n+1 =3 , (179)

"1
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where A and B are linear transfofmations derived respectively from

the discretization of the zeroth and first order parts of the implicit
operator and where § is the discretization of the source vector which

is the explicit part. The solution vector $ corresponds with the dis-
cretization of (ul-ui,uz-ui,...,un-u:). This form has been called

the delta form [105]. When B can be expressed as a sum of linear trans-
formations, each of which leads to an easily solved system when used in
place of B, then Eq. 179 can be solved up to second order accuracy by

a successive solution corresponding to each part of the sum. Such a
decomposition into a sequence of easily solved parts was examined in the
general formulation of altemating-direction implicit methods due to Douglas
and Gunn [106]. For simplicity, suppose that B-B]_+B2 where Bl and
and 32 each yleld easily solved systems. For two-dimensional appli-
cations without mixed derivatives, B1 and Bz are usually taken to

be the transformations corresponding respectively to derivative discreti-
zations grouped in the given directions. That is, yl-deriQatives are

contained in Bl; yz-derivatives, in Bz. With the sum, Eq. 179 becomes
A+ha +3)H_, =§ . (180)

By the addition of hznlA-le to the implicit side, the second order

accuracy of the system does not change and we get the factored form
, 1 s
(A+hBl)A (A+h32 ) = s (181)

vwhich can be split into
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@+nBp P, =5, (182a)

and
a+ns) Y . = ab, . (182b)

When only first and second derivatives appear and are approximated by

the difference operators of Eq. 178, the split system of equations 1is
solved as a sequence of block tridiagonal or nearly block tridiagonal
systems. if the boundary conditions are periodic or extend inward by
more than two mesh points, the deviation from a pure block tridiagonal
form occurs. For block tridiagonal systems, the inversion is efficiently
done with Gaussian elimination by means of the Thomas algorithm. The slight
deviations from pure block tridiagonal forms do not cause much additional
work. Thus, in each case, Eq. 182a is efficiently solved as a sequence
‘of one dimensional (block tridiagonal) problems corresponding to each
mesh line in the yl—direction. Upon completion, w* 1s defined over the
entire mesh which means that Eq. 182b is then formulated over the entire
mesh. The solution of Eq. 182b is performed, as in the first step, as a
sequence of one dimensional problems corresponding to mesh lines in the
yz-direction. The yz-directicn sweeps through the mesh then completes
the calculation for the solution increment $;+1. The solution vector

in the calculation is given at each mesh point by (ul,...,un) -

$ + (ui,...,uz) which is evaluated for both *# and nt+l values. An
evaluation at the n-level ylelds $; = ) which is consistent with the

definition of w as the difference of solution values from the n-level.

13
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As a result, Eq. 182a can be rewritten as
ab, + nB b, + 08, =3 , (183)

wvhich deviates from the original linear algebraic system of equations only
in the evaluations of $ at * and n rather than uniformly at n+l.

Since the form of the original system is retained, the boundary conditions
for the solution at * can be obtained from the original system. The
implication for fluid dynamics problems is that the boundary conditions

at * can be given a physical meaning. A similar form and argument can

be given applied for the solution at n+l (in Eq. 182b) for the second sweep.
When Eq. 182a is added to Eq. 182b, and subsequently, when Am; is sub-

tracted from both sides, we have
Mlgyy + 180, +u80 =3, (184)

which again retai;s the original form ofrthe system and which again can
have bouhdary conditions derived from the original system. Taken together,
the two sweeps corresponding to the two alternating direction implicit
(ADI) directions are said to be comsistent [106].

In the Douglas-Gunn formulation, the ADI "directions" correspond to
the operators Bi which sum to the operator B, which yield simply solved
systems, and which need not be associated with any particular coordinate
direction. As an example, consider a uniform mesh central difference
(Eq. 178) approximation (Eq. 179) to an initial value problem (Eq. 147
with initial conditiong) without second derivatives but with any number of
spatial dimensions. Rather than spatial directions, the operator directioms
can be taken as forward and backward difference directions respectively, as
in the LU decompositions studied by Jameson and Turkel [107]. Specificallyg

the central difference operator of Eq. 178a can be written in the form
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3, 4 |
A+ + A_ where

(185)

and

are the forward and backward differences. When all terms are then grouped
into forward and backward differences, the operator B 1is decomposed
correspondingly into operators Bl and Bz. Moreover, the forward
difference operator B1 could be directly written by using only forward
.differences in the original derivation of Eq. 179, and similarly for B2
with backward differences. From this stage, the consistent Douglas-Gunn
splitting (Eqs. 180 - 184) applies as in the case with actual coordinate
directions. However, by contrast, omnly two factors are needed for any
aumber of spatial dimensions and an LU decomposition, as in [103], results.
Matrix elements for the decomposition are matrix blocks in correspondence
withrthe numbéfrdf éﬁuations and solution variables. To insure a stable
matrix inversiom by Gaussian elimination without pivoting, Jameson and
Turkel[107]a&ded a third derivative term to the original system and
considered coefficient choices to enforce diagonal dominance for both
upper and lower triangular factors. The same type of manipulation should
also come from a specification of em in Eq. 175. The extension to
cases with second derivatives follows the same format and again results

in an LU decomposition. The additional mesh point dependence required

for second derivatives translates, here, into an-upper triangular factor

Ny



U and a lower triamgular factor L with a larger band width than in
the pufe first derivative cases. With further increases in band width,
cases with higher derivatives can be considered. In any case, when
Douglas~Gunn splitting is applied to decompositions into forward and
backward differences, an implicit anmalogue to the original MacCormack
method [21] is obtained. A further LU decomposition is given in
Steger and Warming [108] where the spIitting {s between positive and
negative eigenvalues.

In addition to splitting between forward and backward differences,
there are also variants for ADI methods when the implicit directioms
are aligned with coordinate directions. The alternating-direction
Galerkin method of Douglas and Dupont [107] is ome exépp;e. Thé;r
development is based on a tensor product structure for both operators
and function spaces. Further examples can also be conceived when the
splitting is viewed as a succession of two-point boundary value problems
which upon assembly yield a solution at a given time level, provided that
there is stability and convergence to the correct solution. The motivation
is to obtain a high order of accuracy so that fewer points are needed to
compute a solution to within a given tolerance. Some cases axe the ADI
spline colloecation of Rubin and Koshla [54] at natural knots, the application
of collocation at Gaussian knots from deBoor and Schwartz [56], and the
splined local solutions of approximate coefficient systems studied by

Pruassa [73].



-100-

Solutions on a Composite Mesh

When a flow through a multiconnected region is to be simulated
numerically, it is advantageous to use a discretization which is obtained
by the application of one or more croordinater transformations in a composite
fashion. The composite is obtained when transformations are smoothly joined
together along parts of their boundaries, even if one transformation is
just joined to itself along different parts of its boundary. In the case
with one transfofmation, the junctures are either branch cuts or periodicity
conditions as in the case with cascades of airfoils. Also with cascades,
upstream and/of downstfeam grid resolution can be achieved with separate
coordinate systems. A composite mesh for a cascade of airfoils is illu-
strated in Figure 9 where the upstream resolution is obtained by a Cartesian
system; the downstream,by a branch cut off of a cusped trailing edge. In
the figure,the Qattesian system covers the rectangular region with (oriented)
boundary ABCXYZCBAHA. The other coordinate system has an outer
boundary GFEDXYZDEFG, a downstream boundary GIJPG, and an inner
boundary JKOLMNOKRJ consisting of an airfoil contour OLMNO with an
attached branch cut that precedes the airfoil in the orientation of JKO
and follows it in the orientation OKJ. Both coordinate systems are bounded
from above and below by a periodic boundary ABCDEFG where each system
18 joined to itself,ras in the case with the branch cut from the airfoil.

The juncture between the systems is given by XYZ.

a1
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Figure 9. The Mesh Topology for a Cascade of Airfoils with a Branch Cut from
a Cusped Trailing Edge and with a Cartesian Extension Upstream.

With a suitable mesh generation algorithm, the junctures can be done smoothly
so that no special numerical approximations are needed for the derivatives

at coordinate system junctures. Given two well-defined coordinate systems,
almost the entire region will be covered. The uncovered portions are given
by the two curved triangular regions XCD and 2CD which for purposes of
resolution should be made small enough to be on the order of a mesh size in
the local region. It is important to note that the uncovered regions are the
result of the mesh topology and are not coordinate singularities to be
assoclated with either coordinate system. A coordinate singularity would
yield a degenerate metric (Eq. 11) and degenerate equations (eg., Eqs. 75 -
82) which indeed is not necessarily the case for the coordinate systems which

border the uncovered regions. Schematics of typical coordinate curves are
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depicted with solid curves to designate one ADI-direction and dashed
curves for the other. If there are n dashed curves of the form BWB
and m of the form IRSTUVP in correspondence with each coordinate
system, then the three types of solid curves MTYWH, LSEUN, and
KRFVK respectively contain m+n, 2m, and 2m mesh points. When
there are p mesh points along XYZ, q mesh points along DEFG, and

no mesh pointsf internal to the sides of the uncovered regions XCD and
ZCD, the dashed curve IRSTUVP contains p+2q mesh points and the
dashed curve BWB contains p+2 points counting two periodic segments
ABC in correspondence with the top and bottom of the Cartesian system.
As the m dashed curves IRSTUVP are taken to vary from inner to outer
boundaries, the coordinate mesh around the airfoil and branch cut is
generated with a total of (p+2q)m mesh points. From the (p+2)n
Cartesian mesh points in the upstream extension, the p juncture points
common to both systems must be deducted to yield a total of (p+2)n - p
distinct points and a grand total of (p+2)n + (p+2q)m - p for the
entire mesh. Among the possible choices for m, n, p, q, only the choice
of p will cause a change in the number of mesh points gimultaneously
for both systems. With the other choices, the number of mesh points is
controlled entirely within the given coordinate system. Consequently,
another advantage with the use of more than ome coordinate system is that
a local resolut:loh for a given region can often be accomplished with the
addition of mesh points in a local coordinate system while there is no
increase in the number of mesh points in the other systems. Asg an example,
a resol'ution of an airfoil boundary layer and wake can be accomplished

with both a redistribution and an inci'eaae in the number (m) of dashed

137
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coordinate curves IRSTUVP without an increase in the number of mesh
points for the upstream extension. In the ADI splitting along dashed
and solid curves respectively, the lengths of the resultant one~dimensional
parts will vary within each ADI direction. Along the dashed curves, the
lengths will be p+2 and p+2q as the type is varied from BWB to
IRSTUVP. Along the solid curves, the lengths are m+n and 2m
which are respectively the longest lengths obtained when periodicity

is applied. An {llustration of the camputationai mesh with periodicity
indicated by point labels is given in Figure 10. In the rectilinear
computational space, the primed letters are used to denote points in
correspondence with the physical space in Figure 9. The dashed and

solid curves are also matching with Figure 9.

B e e | oo ‘r:*rp'

[ F . —9- y ¥ y - ——— or—&
J' K!' o' L' M' N' o' K'J'

Figure 10: The Computational Space for the Cascade Depicted in Figure 9.
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With the assumption that X, Z, C, and D are the only mesh points on
the boundaries of the uncovered regions, C' and D' appear as the
same computational point but ére distinguished by the association of

C' only with the upstream extension and D' only with the other system.
In cases with such complicated computational spaces, the theory of ADI
splitting is not very well developed and we must rely more on computa-
tional experience. Such experience has been gained on L-shaped regions
where, for example, a flow over a rearward facing step has been computed.

Also, some theory has been indicated in [110].

BOUNDARY CONDITION

Given a general forﬁ for the equations of motion and a numerical
method for their solution, general boundary conditions must be obtained
in order to develop a gengral algorithm for the numerical simulation of
a flow field over any region which 1s described by ome or ﬁore coordinate
transformations. In addition to boundary conditions in coordinate direc-
tions, there must be the more general capability to specify boundary condi-
tions as linear combinations of functions and derivatives which are taken
in any direction and are applied to any scalar or vector quantity. For
most fluid mechanics problems, only derivatives of order two or less need 7
be considered. To form the necessary boundary conditioums, expressions
must bé detived for generally directed derivatives and for a decomposition
of the velocity vector into specified directioms. With an assumed discreti-
zation from one or more coordinate systems, the coordinate frame (all :j

from Eq. 3) will be taken as a frame of reference since the geometric

boundaries of objects in a flow field are fit with coordinate surfaces.
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As a result, the Cartesian frame will not be needed as it was for the
discussion on camber frames (Eqs. 125-129). Given the contravariant
expansion of the velocity vector field v = vizi and a frame field of
unit vector fields ?l’ ?2""’?n’ the projection of the velocity vector
onto each frame field direction ?j is given by (;' ?j)?j = vi(zi' gj)?j
and the sum of all projections yields the velocity decomposition into

the specified frame field directions which is given by
RIS Y S (186)
i "3°73

As an example, suppose that a two-dimensional physical boundary is
degscribed by a coordinate curve in the yl-variable for some constant
value of y2 and that a velocity decomposition into normal and tangential
directions is needed for the boundary conditions. The tangential direction
is clearly determined by ;1;-the normal direction, by :2, as can be
observed from the definition of contravariant vector fields (Eq. 17) which
are illustrated in Figure 4. Upon normalization with Eqs. 7 and 21, the
unit frame field along the bounding curve is defined by the unit tangents
g - Zl//g'l'l' and the unit normals £, = :Z/v/gﬁ . Again with Egs. 7, 17,
+

and 21, the dot products ei.‘?j are obtained and the regults are inserted

into Eq. 186 to give

+> 1 2 812 v2 )
ve [V Vv == 2+ £, (187)
( 1 /—gu) 1 77z 2

for the tangent-normal decomposition which is directly applicable when the

solution frame is the coordinate frame. For other solution frames, the



-106-

coefficients must first be transformed into the coordinate frame to obtain
the contravariant components vi for Eq. 187 in a manner such as given

in Eq. 128 where ?i represents a different frame. The transformation
between solution and coordinate frames, as illustrated in the example,
also carries over 1in general to both decompositions and derivative ex-
pressions that are given in contravariant components.

Derivative expressions along a boundary and in arbitrary directions
can be obtained from the dot product of an arbitrarily specified unit
vector field f and the gradient operator defined in Eq. 47. When the
vector field directions £ are locally integrated, a local coordinate
z 18 determined in a neighborhood of the boundary by the condition that
f 1s the field of natural tangents (Eq. 3) to the coordinates in the
z-variable at points on the boundary. Since the natural tangets are of
unit length, 2z 1is an arc length variable (Eq. 9). Consequently, the

f-direction derivative operator with respect to arc length z is given

by

£ afev . (188)

For a function a, an application yields the z-derivative

a 2.+, 3
%; - (fse') ;:I . (189)

By an application to the velocity vector, the z-derivative of velocity

becomes

N
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ﬂ- .v;

3z

i
2 ov m i >k - >
-f (_ay“+v rm) &ot, (190)

Bv m i \>
(f (a k+v Plcm)ei R
y

where the second equality follows from Eq. 48. For second derivatives,
consider another possibly different vector field of unit vectors h and
its assoclated local arc length coordinate w in the boundary region. The

general second derivative is then given by
a—w—a;-ﬁ-v'f’-v , (191)

which i3 a repeated derivative in the same direction if fi = 2 and other-

wige is a mixed derivative. For a function a, we have

3 -+ *ﬁ
—— - (heoh — [(f ) ] , (192)
ow 9 By ayj
and for velocity, .
3_ W 3B 1
.- (a L ) (193a)
Y
where
+4 1 b 8 —
gl = (- o )( r ) . (193b)
yJ

As an example, suppose that normal derivatives are needed at a bounding

surface described by curvilinear coordinates yz,...,yn for some comstant

1

value of y~ in Eq. 2. In a parallel manmner to the velocity decomposition

example, the unit normﬁl vector field is obtained from the contravariant

bagis field :1 which by definition (Eq. 17) 1is perpendicular to the:hasis
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->

of boundary tangents ez,...,zg. Upon division by its magnitude v gll

from Eq. 21, the unit normal vector fields are given by

+1
Pafi=eS— (194)
éll
By substitution, the normal derivatives with respect to arc length =z are
given by
da 3_3_
3z i , (195a)
and
2 11 :
a; -E_ 2 (d BL) , (195b)
3z [T oy \ it ayd

> 1k 1 .
v _ g f(v . mpl)2 , (196a)
z 11 ayk m) 1
g
and
2> 1k 1 :
3_‘2' -E _ELE+ g™ r;m)z’i' . ~ (196b)
9z 11 \9y
8 .
where
. 13 i
of - & (3L+ ) 1.112) , (196¢)
AV ayd

for wvelocity.

With the derivative expressions, extrgpolation boundary conditions can

be directly specified in any direction by setiing a derivative to zero in the

1y
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specified direction. When the unit vector field f defines the specified
direction and z i1s the associated curve arc length, the extrapolation
function is a polynomial in z of degree ome less than the order of the
vanishing derivative. For linear extrapolation to a boundary, the second
derivative is set equal to zero at the boundary by use of Eq. 192 for

scalars and Eq. 193 for vectors, where in each equationm, fi = £. The coordi-
nate derivatives which appear in each equation must then be approximated

to at least second order accuracy. With finite difference methods, one-

sided differences would be used in from the boundary while central differ-
ences could be used for the other coordinate directions. For a skewed extra-
polation, central differences would cause mesh points to appear on either gide
of the boundary mesh point where the derivative vanishing condition is applied.
When ADI methods are applied along coordinate directions, an implicit boundary
condition is usually applied for stability reasons, and as a consequence,
points on either side of the given boundary point must be evaluated at the -
explicit level to avoid a lateral implicit coupling alongvand near the Your-
dary which in turn would defeat the purpose of the ADI splitting. A skewed
extrapolation will generally result when the directiom of extrapolation is

a characteristic direction which is used to avoid artificial numerical refled-"-
tions from a transmissive boundary. As an example, a shock wave impinging
upon a free stream transmissive boundary should not be reflected off of 1:,
but instead, should pass through undisturbed. With the free stream Mach
number, the shock angle can be computed relative to the‘velocityvvector

and the resultant direction can be used for extrapolation.  Fro— m'merical
experiments [111] with a 45° shock angle, extrapolations were taken

separately in directioms along the shock and normal to a transmissive boundary
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intersecting the shock at 45°. Solutions were spatially marched in a
direction along the transmissive boundary and the only disturbance in
the flow was the shock wave of moderate strength. In the experiments,
the only nonreflecting boundary condition occured when there was an
aligament with the shock wave.

The extrapolation process given for first degree polynomials in =z
carries over to polynomials of an arbitrary degree j when the coordinate
derivatives are suitably approximated. In general, the coordinate deriva-
tives appear in the vanishing condition for the (j+1)4L z-derivative
of a quantity which defines the Jth degree polynomial in 2z for the
quantity. The (3+1)4% z-derivative is obtained by (j+1) successive
applications of 3/3z defined in Eq. 188 as f+V and illustrated for
general second derivatives in Eq. 191. 1In the case of zeroth degree extra-
polation in the £ direction, j = 0 and the coordinate direction deriva-
tives appear only up to fifst order as can be observed from Eqs. 189 and
190 and should be approximated to first order accuracy. 1In continuation,
the first degree (above) and higher degree extrapolations will contain
coordinate derivatives of order up to that of the vanishing z-direction
derivative, each of which must be approximated to an accuracy consistent
with the polynomial degree in =z.

Extrapolation boundary conditions of the various degrees are useful in
a variety of situations where boundary quantities can be approximated
entirely from an assumed solution smoothness in a given direction. Typical
cases occur with transmissive boundaries where disturbances must exit with-
out reflection since the boundary locations are arbitrarily chosem to delete

a part of the physical domain. -Barring junctures between coordinate systems

Ty
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(as in XY Z of Figure 9), the remaining transmissive boundaries are an approxi-
mation of infinite distance where free stream conditions can be assumed as
known. As a consequence, even the specification (using Eq. 186) of
freestream values (Dirichlet conditions) along the transmissive boundaries
can be viewed as a zeroth degree extrapolation from values at infinity.
When the transmissive boundaries are placed in close proximity to the
object under study, the appfoximation to infinite conditions will usually
not be accurate unless further information about the solution is used.

For example, in the study of Engquist and Majda [112]-a linear two-
dimensional scalar wave equation is considered where the general solution
is a superposition of simple waves which is used to derive a pseudo-
differential operator (that contains a square root of differential opera-
tors) as a nonreflecting boundary condition which in turn is approximated
to obtain differential operator boundary conditions for successive levels
of accuracy. In continuation, they applied their technique to the shallow
water equation and were able to reduce reflectioms at thertransmissive
boundaries. However, when viscous compressible flows are considered,

the desired information about the solution 1is usually not complete enough
to directly use the methods of Engquist and Majda. Another method has
been considered by Hedstrom [113] and extended by Rudy and Strikwerda [114]
and [115] to obtain non-reflecting subsonic downstream boundary conditions
for pressure. The conditions increase the convergence rate to a steady
state in cases where a constant static pressure p_, can be,o.s;lcd for .
the’ steady state flow on the downstream transmissive boundary. Trans-
missive boundaries have been investigated from a number of viewpoints

(Ili;}?;'[1241) and fﬁrtﬁgr research on this subject is.needed, especially

wvhen the boundariesrare cldse to solid objects in the flow. By
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comparison, with supersonic transmissive boundaries, no specificatiouns
are needed and an extrapolation of characteristic variables (c. f. [118])
in characteristic directions could be expected to give successful results
in a number of cases for both implicit and explicit boundary conditions.

At solid boundaries to a viscous flow, the physical no-slip boundary
conditions are used with the specification of zero velocity or some close
approximation to it. It then remains to determine the density or pressure
and the energy. Choices have varied from extrapolation to an application
of the equations of motion such as a differentiated continuity equation
(for doubly specifiably boundaries), a momentum gquation, or a kaown
approximate potential flow solution. For implicit conditions, a time-
1ike linearization is necessary. In a parallel to boundary layer theory,
boundary conditions for surface pressure can be obtained from the normal
somentum equation as given by Steger [29]. From the frame field viewpoint,
the normal momentum equation comes directly with the choice of a frame for
derivatives where the normal direction is part of the frame.

Further types of boundaries include junctures between coordinate systems
and surfaces about which a region is extended by use of reflective symmetry.
The application of reflective conditions can be accomplished with a small
band of reflected meshpoints, with equations of motion, and with extrapola-
tion where even functions such as scalars and odd functions such as normal
velocity ‘components are obtained from polynomials in a normal direction

variable z which respectively contain only even or odd powers. Junctures

IS B0
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between a coordinate system or systems such as XYZ or the branch cut
OKJ 1in Figure 9 are given by periodic conditions where in effect the
boundary point is treated as if it were an interior point unless there

is a lack of smoothness in the mesh; and hence, a need for special treat-
ment as would occur with a derivative discontinuity which would require
one-sided differencing for finite difference methods. When the juncture
is an uncovered region caused by the mesh topology as in XCD of Figure
9, there is no required special treatment provided that the region is
small enough to not disturb the flow field solution beyond normal trunca~
tion error and that no mesh lines dead end at the region. In the latter
case, mesh lines which dead end can be directly treated by extrapolation
or by one sided equations of motion.

With the general mesh topology that caused the uncovered regions,
there is clearly the capability to resolve certain high gradient regions
in a truely local sense and to still obtain a reasonable mesh in other
regions such as the Cartesian upstream extension ABCXYZCBAHA 1n Figure
9. In general, the simultaneous application of several coordinate systems
can be used to extend coordinate boundaries to approximate more closely
far field condtions without a sacrifice in the basic mesh structure beyond
and near the solid objects where steep gradients exist. As a consequence,
there is a balance to be made between a composite mesh extensiomn with
simple far field boundary conditions and a single coordinate mesh of limited
extent where the imposition of far field boundary conditions arevmore complex
since severe flow irregularities would be shed from the solid boundaries,
would probably not be dissipated when the close in transmissive boundary is

reached, and would have to be passed out of the region without reflection.
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MESH GENERATION FROM COORDINATE TRANSFORMATIONS

As the state of computational fluid dynamics has advanced, so has
the desire to utilize these advances to perform complicated and extensive
flow field simulations. Included in the simulations are those which involve
the complex geometric boundaries and topologies which commonly appear in
turbomachinery. As the trend continues, the critical importance of the
mesh generation process has become evident. In the mesh problem a complica-
" ted region must be discretized in a suitable manner before the desired numeri-
cal simulation can even be attempted. The constraints placed upon the mesh
will vary with the flow field properties and with the numerical method to
be applied. fhe weakest constraints are associated with finite element
methods since an integration by parts lowers the required level of smooth-
ness (differentiability) and since the given region can be more generally
discretized with triangles (with possibly one curved side, [48 ]) rather
than by rectangles. The major restriction on the triangles is that they
cannot become too distorted or else accuracy would suffer [ 48 ]. Besides
the topological generality, the main advantage of the triangular decomposi-
tion is that certain regions of critical importance can be resolved in an
area sense. By contrast, the ummodified application of a single coordinate
transformation 18 restricted to-a gridded structure in which the additiom
of coordinate curves for the resolution of a given area will also extend to
other ‘areas; thus, mesh points would be wasted. However, the problem of
resolution in an area sense, as axamined in Figure 9, can also be accomplished
with a composite of coordinate transformations. A major advantage with the
application of coordinate transformations, whether in an isolated sense or

in a collective sense, is that the matrix inversion problem is generally

IR
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simplier than for triangular meshes. Typical matrix structures associated
with coordinate transformations usually have a high degree of regularity
(such as simple banded structures) rather than the more general sparse
matrix which requires the application of special inversion techniques
([125] and [126]). For finite difference methods, the mesh must

have a high degree of regularity and smoothness. Moreover, when a collec-
tion of sufficiently smooth coordinate transformations are smoothly joined
together to generate a composite mesh, finite difference methods can be
used to obtain solutions with the same topological and area resolution
properties that were intrinsic to finite element methods. In between
finite difference and finite element methods, there are finite volume
methods ([49] and [51]) which also require the structural regularity from
coordinate transformations but which require a lower level of smoothness
since the governing equations are expressed by an integral rather thanm by
a differential expression. In any case, no matter which numerical method
is used, an examination of coordinate generation techniques is needed when
a general algorithm for flow field simulation 1s constructed to accept
regularly structured geometric data as input. In the previous sectioms,
various equation formulations, numerical methods, and boundary conditions
were presented in a manner from which such an algorithm can be comstructed
in a variety of ways for various classes of problems.

In the examination of coordinate generation techniques, various types
of coordinates will be considered and evaluated in terms of the constraints
that are needed to adequately discretize complicated regions for the purpose
of flow field simulation. The constraints arise from fluid dynamic proper-

ties, s0lid boundaries and their arrangement, junctures between coordinate
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systems, and a desired general level of coordinate simplicity. The
creation of smooth jupctures between coordinate systems and the minimiza-
tion of mesi distortion throughout each system both lead to simplicity

for the entire mesh which on a local level can be measured by the metric
(Eq. 15). Simplicity is obtained relative to the collective application
of all constraints, and as a result, metric simplicity will be limited by
the constraints. In general, the broad classes of coordinate transforma-
tions in the order of increasing metric complexity are given by conformal,
orthogonal, and nonorthogonal transformations. A similar ordering also can
be given for general space~time transformations. To examine coordinate
gsystems either on an individual basis or in a broad sense, the constraints
above are considered in geometric terms and are separated into the cate-
gories of boundary specifications, uniformity specifications, and interanl
specifications. Boundary specifications include the basic geometry of
solid objects, the junctures between systems, the boundary coordinates or
equivalently pointwise distributions, the angles of coordinate curves which
enter a boundary, and the rates of entry for such coordinate curves. Uni-
formity specifications are applied to either local or global distributions
of coordinate curves or points to form a basis from which the curves or
points can be redistributed by an a priori specification of a digstribution
function or by a solution adaptive approach, both without distortion from
the underlying transformation. Internal specifications are applicable when
an interior shape is needed or when an interior mesh structure such as a
Cartesian or Polar system is to be smoothly embedded within a global mesh
to simplify a flow field simulation in the given region. When boundary

geometry is specified without a required distribution of boundary points,

Ty
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conformal transformations can be used. When the distribution of boundary
points are also specified, conformal transformations are inadequate and

must be replaced by either orthogonal or nonorthogonal systems. As further
constraints are added, a greater degree of precision is required to control
the mesh in order to satisfy the given specifications. The requirement for
precise controls leads to the development of the general multisurface trans-
formation. As a consequence, the discussion shall start with conformal
methods, continue to orthogonal and nonorthogonal methods, and end with

the multi-surface method.

Conformal Transformations

A conformal transformation is a mapping which preserves angles between
any pair of intersecting curves. When a Cartesian system of curvilinegr
variables (yl,yz,...yn) is mapped into the space under study by means of
Eq. 2, the lines ¥,(8) = (v seeeuyd Lyl 4t eyl 5% snd chetr naturar
tangents ﬁj (which are obtained by differentiation with rtlpoci to t)
are mapped respectively into curves x 3 ?J(t) and their natural tangents
;j given by Eq. 3. Under a conformal transformation, the orthogonmality
(ﬁi° ﬁj - Gij) between the curves ?; and ;3 must be preserved with the
image curves xo ;i and ; ° ?5 which means that sij = Z; . :3 vanishes
for 1 # j. Similarly, the orthogonality between the lines aij(t) =
(yl,...,yi-l,yii-t,yi+1,...,yj-l,yj+-ct,yj+1,...,yn) for ¢ =1 and -1
must also be preserved. Consequently, the natural tangents Zi ¥7c23
corresponding to c¢ =1 and -1 must be'orthogonal. Thus, 0 = (:1+zj) *
(31-133) - Zi- :i - 33 -33 = 843 ~ 8y for all 1 and j. As a result,
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the matrix of metrics 1s diagonal with equal entries; hence it has a

determinant g = 8?1 and from Eq. 11 a Jacobian J = (gll)n/Z_ In

terms of the Jacobian, the metric (Eq. 15) for conformal transformations

is given by

@s)? = |712® {@ayhH? + @D 4.+ @H? ), (197)

which in two-dimensions reduces to
@s)? = |3|{@yh? + wyd? . (198)

Also in two-dimensions, functions of one complex variable can be applied
to generate conformal mappings when the functions are analytic. For
analytic functioms, f(y1+ /=1 yz) - x! 4+ /71 xz, the Cauchy-Riemann

conditions are valid and are given by

a3
ayl 8y2
and (199)
axt _ _ax?
3y2 Byl

which can be inserted into the definition of the Jacobian (Eq. 5) to yield

IR B8
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o
1 1 2 - 2 2 2
3y 3y 1 2 2 1
7. .(a_xi) . (ﬁ%) - (342) +(32‘3) . (200)
2 1 y dy dy ay
ax”  3x
syt oyt

where the last equality follows by another application of Eq. 199. The
metric given in Eq. 198 can also be derived directly from the Cartesian
arc length expansion (Eq. 13) with the aid of Eqs. 199 and 200 which
develops in the manner
1 2 2 2
@s)? = (axH)? + (axd)? = (ax dyk) +(3x dyk)

ay* ay*

k .k
- 3@@yh? + z(% L‘z)dyldyz + 3(ayH)?
ay~ 9y

(201)

- J‘(dyl)2 + (dyz)Z’ .

!

With the two-dimensional conformal metric 8ij = 3513 from Eqs. 198 or 201,

the Christoffel sysmbols from Eq. 37 become

=5 (tog /)
o

and : (202)

'3—2 (log /3) .
oy -

The metric information including the resulting Christoffel symbols, can be

used both to define a system of governing equations in the coordinates and

to examine the coordinate structure. Since the metric is determined solely
P )
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in a scaled Cartesian sense with the Jacobian as the factor, the spatial
variance in the coordinate structure is just a dilation. Upon discretiza-
tion, the dilation can be observed in a mesh of approximate squares which
very in size. For large or unbounded regions, the rate of dilation is
often quite large which, for viscous flow anlyses, poses a problem of ade-
quate resolution in upstream and downstream directions. In addition, the
conformal structure imposes a distribution of points along the bounding
contours, as can be observed from the anélytic continuation arguments of
complex variable theory. Although a bounding contour may then be adequate-
ly fit, the imposed distribution of points along the contour may also be
inconsistent with the distribution of solution gradients which would appear
with viscous flow problems. In contrast with the absence of control over
mesh dilation and the distribution of boundary points, an advantage 1s
the direct formulation of inviscid, incompressible potential flow informa-
tion which in itself can be useful.

When boundaries of the flow region can be fit with analytically formu-
lated transformations, when mesh dilation is of little éoncern, and when
the distribution of boundary points is unimportant, conformal transformations
are optimal in the sense of problem simplicity because of the metric struc-
ture (Eqs. 198 or 201) and the direct formulation. 1In a number of cases
boundaries can be fit by means of a sequence of simple conformal transforma-
tions. However, .in most cases of ﬁractical_importance, the boundary shapes
are too complicated; and consequently, cannot be simply fit as desired. 'Thus,
approximate methods must be considered. For éeneral airfoil shapes, the
method of Theodorsen and Garrick [127] has been extended by Ives [128] aad

' " R
applied to both cascades [128]|and two element airfolls (130T where, in each
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case, the Fast Fourier Transform was used to gain computational effi-
ciency in the generation process. Each of those techniques maps air-
foils to near circles through a sequence of gimple transformations which
is followed by a Fourier type transformation to take the near circle into
an exact one 8o that the overall transformation is conformal. For shapes
that are more general than airfoils, Schwartz - Christoffel type trans-
formations can be applied to approximately fit the contours. The first
systematic Schwartz - Christoffel technique was developed by Anderson
[131] who used the classical form with pilecewise linear curves. This
technique works best for simply connected regions where no branch cuts

are needed. However, a basic limitation in this method is the poor repre-
sentation of wall currature which can be partially resolved by rounding
the corners in the manner discussed by Henrici [132]. 1In further work,
Davis [133] applied the curved-sided formulatien from Woods [134] to remove
some more of the curvature problems. To alleviate the complexity that is
often required to fit boundaries with conformal transformations, nearly
conformal transformations have been used by Jameson [31] to remove the
need for a Fourler analysis on airfoil contours and by Caughey [135] to
remove the need for a precise fit with Schwartz ~ Christoffel transforma-
tions. In each case, easily formulated conformal trﬁnsformations are used
to obtain approximafely the right shape which is then made into a precise
fit by means of a simple shearing transformation. The result is a
slightly nonorthogonal system of coordinates. If the shearing transforma-
tion is replaced by the multi-surface transformation [136] to be'discussgd
in a following section, then orthogonality and even conformality can be

retrieved on major portions of the region.
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Orthogonal Iransformations
When conformal mappings are not easily obtained or when more com-
trol over mesh distributions is needed, the slightly larger class of
orthogonal transformations should be considered next since it will
still yleld a fairly simple metric structure. For orthogonal trans-
»>

formations, 31j = Zi' ej vanishes when 1 ¥ § which leaves only the

diagonal entries 8i4 in the metric which then is given in the form
2 1,2 2,2 n,2
(ds)” = 8., (dy)" + g5, (dy")" +.uet g (dy )™ (203)

where the coefficients may be unequal. To clarify the distinction between
orthogonal and conformal transformations, consider a fixed point and the
coordinates in a small neighborhood around it. In the neighborhood, the
functions 84 are nearly equal to their values at the point; thus, the
measurement of distance (E&. 203) along coordinate curves is very nearly
given by distance measurements along the respective vectors :i in the
space of tangents attached to the point in questionm. When the functions
8,4 arTe all equal, the distance measurement in the tangent space is merely
a uniform dilation or contraction of the original Cartesian system. Con-
sequently, lengthratios, and hence, angles are preserved between the Car-
tesian sysem and the tangent space. But then the direction of a vector in
the tangent space corresponds precisely with the curves which pass through
the point and have the vector as a tangent. ,§°99°’ the transgformation with
equal diagonal entries preserves angles and is therefore conformal by the
original definition. Moreover, since the implication of angle preservation

from a metric form is a converse to the derivation of the metric form from

= i
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angle preservation, the metric form as given by Eq. 197 can be used as
a definition for conformality. Consequently, as the length ratios

"8yy / “8.1_1 for distinct 1 and j deviate from unity, the transforma-

tion smoothly deviates from conformality.

When two-dimensional conformal transformations are applied to obtain
a rotationally symmetric system of three~dimensional coordinates, the
resulting system is orthogonal but not conformal. In particular, such a

transformation 13 given by

1
X =u

x2 = v siny3 (204)

x6 = v cos y3

where f(y1+ V-1 y2) =u+ /<1 v 1is analytic. For the angle y3 - /2,
Eq. 204 reduces to the two-dimensional case where u = xl and v = xz and

the Jacobian J 1is given by Eq. 200. With the aid of the Cauchy-Riemann con-

ditions (Eq. 199 with xl = yu, xz = v), the Jacobian H for Eq. 204 is given by

— —

9u_ u_ 0
1 ) 2
3y dy
H = det a—vl-ainyg, Lzsiny3 vcosy
3y dy '
_a_v_l cos y3 a_vi_ cos y3 -vsain y3
3y dy -

— ' - (205)
2 2
() 2 - ]
oy oy oy oy dy 9y

and the metric, by
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@s)? = (axH)? + (dx%)? + (dx))?

2
dy dy

-
+ -a—v—(sin y3) :‘lyl-i-gv—(s:l.ny3 )dy2+ (vcos Y3)d}'3

.3}'1 3)’2 ]

+ 3—vl(cos y3) dy1+a—v2-(cos y3) dyz - (vsin y3) dy3 (206)
9y 4 ]

2 2 2 2
- [(‘8"—1) *(aLl) ](dyl)z + [(1“3) +(ﬁi‘) ](dy2)2
dy oy dy dy

du_ 3 1,2 2
+ 2[ o Sy 3"1 3"2] dylay? + (v)2(ay?)?

9y~ 3y~ 9dy 9oy

= 30dyH? + 1y ? + @ 2eyH? .

On substitution of the metric coefficients g,; = 322' =J, 833" (v)2
into BEq. 37, the nonvanishing Christoffel symbols become
S s s - I
1= Tia = Ty = 2My3 = 7 108 4
oy
2 .0l o 2 _ o3 - 9
F22 7 T2 = Ty 7 M3 = 7 108 4
y ‘.
(207)
r'l - -2 L -
i3 J ay1
S 4 v_
33 J 3y2

=
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When the two-dimensional conformal mapping f 1s taken as the identity
mapping, the rotationally symmetric transformation of Eq. 204 reduces to
cylindrical coordinates with metric data 817 " 82 ™ 1, 833 = (yz)2 and
a nonzero Christoffel symbol P§3 = —yz.

To generate orthogonal coordinates, there are methods which simply
compute orthogonal trajectories to a given family of surfaces and methods
which come entirely from the solution to a system of parital differential
equations. For orthogonal trajectories in two dimensions, a family of
smooth non-intersecting curves is generated between two bounding surfaces
and then, from a specified distribuﬁion'of points on one boundary, the
orthogonal trajectories are computed until the other boundary is reached.
When the family is composed of a continuum of curves, a smooth field of
normal vectors can be constructed and from each point on ome boundary, a
curve with its tangent field determined by the normal field can be analy-
tically specified as an intgral which starts at the point and ends some-
where on the other boundary. When such integrals are cohputed for all
points on the first boundary, the family of orthogonal trajectories is
obtained which, on combination with the originally generated family, forms
an orthogonal coordinate system. If the original family of curves is
generated not as a continuum but instead as a finite collection which al-
most uniformly subdivides the region, then orthogonal trajectories must be
numerically computed from curve to curve starting with the first boundary
and continuing, as before, until the second boundary is reached: An
algorithm to generate orthogonal ﬁréjectories to the finite family of
curves was given by McNally [137]. In McNally's method each trajectory

is advanced from curve to curve in three steps: first, a normal line is
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is sent from the present curve to the succeeding curve; second, a normal
line from the succeeding curve is sent back to the trajectory location on
the present curve; and third, the trajectory is advanced as a line which
18 nearly half way between the previous two. The result is an approximate
set of orthogonal trajectories which converges to analytically defined
trajectories as the finite family converges to a continuum. Applications
of McNally's method were given by Graves [138] to generate orthogonal
coordinates from isolated objects to a surrounding far field boundary. 1In
each case, the trajectories were started from a specified distribution of
points on the object, progressed through the finite family of curves and
ended upon the far field boundary. As in all orthogonal trajectory methods,
the distribution of points on the final target boundary is not arbitrarily
specified; but instead, 1s determined by both the initial distributiom on
the starting boundary and the choice of curves in the specified family.

As a consequence, the pointwise distribution on the far field boundary was
especially sensitive to the geometry of the isolated objects. Results were
generally good for comvex objects since the trajectories were mildly dis-
tributed which lead to minor deviations from an arc length distribution on
the far field boundary. However, with concave objects, the trajectories
became severely bunched; and by the time the far fieid boundary was reached,
the distribution was severely distorted relative to arc length. To relieve
the severe bunching of coordinate curves, Steger and Chaussee [139], in a-
preliminary study, considered the orthogonality relationship (g12 = Q)

and a Jacobian specification (J 1in Eq. 5) as a pair”ofrﬁyperbolic partial
differential equations to be solved from the isolated object into the far

field. On application-to a highly concave object they were able to- relieve

eI
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the bunching problem. In a similar manner, an initial value problem was
also considered earlier by Stadius [140] who generéted'Orthogonal coordi-
nates from a different hyperbolic system with different specifications. In
either study, the solution to the hyperbolic system not only determines

the distribution of points on the outer boundary, but indeed also the
boundary itself. For external flow problems over a single object, the
precise form of the far field boundary is not particularly important so
long as the geometric vériations are mild. By contrast, however, the outer
boundaries for internal flows must ofﬁen meet precise specifications. One
important example is an outer boundary where periodicity conditions are
required as in the case with cascades of airfoils (eg. DEFG in Figure 9).
For such cases, we must be able to precisely specify both inner and outer
boundaries along with their pointwise distributions. In a preliminary
study, the present author [141] has considered a linear elliptic system
derived from a specified metric. Additional controls on general mesh
clustering also exist within the system. However, the precise level of
control that i8 needed to specify an internal mesh'structure is not readi-
ly available in this context and for that purpose nonorthogonal coordinates
must be considered. In particular, with the multi-surface coordinates [136]
to be considered subsequently, such controls are available and can be applied,
for example, to establish a umiform distribution of coordinate curves which

can be redistributed without distortion by any distribution fumction.
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Non-Orthogonal Transformations
The capability to prescribe mesh properties 1s only partially avail-

able with orthogonal systems and can more readily be obtained with the
larger class of nonorthogonal systems. Among the first properties to

be prescribed were the specifications of both the boundary geometry and

the distribution of boundary points. As a generalization from the com-
plex variable techniques for conformal mapping, Laplace equations for each
Cartesian direction in the physical domain were solved in the rectilinear
domain of curvilinear variables with the boundary geometry and pointwise
distributions combined into a specification of boundgry conditions [142].
The boundary conditions are needed to obtain the prescribed properties

and are the cause of the deviation from conformality into a nonorthogonal
gsystem. As can be expected, this deviation is greatest near the physical
boundaries where there is a forced distribution of mesh points, and then
gradually, there is an apﬁtoaeh to conformal conditions in going from the
boundaries toward the interior of the region. In addition to the specifi-
cation of boundary locations and pointwise distributions, periodic boundary
conditions were also specified to obtain branch cuts of various sorts. The
location of and thé pointwise distribution along the cuts could not be given
in advance since such properties were then determined by the solution of the
system of partial differential equations. For applications to a cascade of
airfoils, the periodic boundary then cannot be given by periodic boundary -
conditions since there would be no assurance that the intended periodic
portions would even have the same shape. To obtain coordinate systems for
cascades of airfoils or blade shapes without the need to solve elliptic par-

tial differential equations, an algebraic approach was developed [143]. The

Ty
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observation was made that the boundary geometry and the pointwise distri-
bution along the boundary could be separated into an intrinsic parameter
(in two-dimensions, usually arc length) discription of the boundary geome-
try and a choice of parameterization for the pointwise distribution which
can be applied relative to the intrinsic parameterization. With a general
parameterization :, the algebraic transformation was given by the simple

linear deformation
Pty = 3@ + 3, -3®1 (208)

which fits the boundaries ;1(?) and FZ(;), regspectively when r = 0 and 1.
For the cascade of airfoils, E is a scalar t which parameterizes both

the airfoil contour fi and an outer boundary 32 where periodicity is
applied on portions above and below the airfoil. The periodic aligmment is
obtained with the same shape specification for each portion and with a choice
of parameterization that yields a precise matching of mesh points. An

example is given in Figure 11 where three of the coordinate systems are
stacked on top of each other to display the periodic aligmment. In addition,
the independent variable r was replaced by a distribution function R(r)

so that an attached boundary layer could be resolved. The distribution func~'

tion [144] was chosen to be

tanhD

R(r) = mr + (1-m) II—MM} . 7 (209)

Here, the ratio of hyerbolic tangents is a homotopy parameter in the linear

deformation of the line R = mr into the line R = m(r-2) + 2. The rate
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Figure 11. A Cascade of NACA 0024 Airfoils. The camber curve is bent
so that the coordinate system can be aligned with an arbi-

__“t;;:.qry Gpstpeén flow direction.
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of deformation is controlled by a damping facto? D; this determines the
length of essential adherence to the line R = mr . The slope m is
chosen so that the resulting line would yield a uniform mesh which is
fine enough to resolve the given boundary layer region. |

The distribution is, in fact, a generalization of the distribution
due to Roberts [144]. For n mesh points and a constant a > 0, his
distribution is given in inverse form as a map from a physical domain
[-a, a] into a computational range [1,n]. From an inversion and a normali-
zation of the range and domain to the interval [-1,1], his distribution
reduces to a normalized hyperbolic tangent. A rigid tramslation then
corresponds to the special case with m = 0. As a result, the damping
factor is the only control on the shape of his distributiom.

Cascade coordinates have also been obtained [145] with a generali-
?ation [146] of the earlier elliptic system [142] to one which is based on
Poisson equatioﬁs rather than Laplace equations. The source terms in the
Poisson equations were used as forcing functions to push fhe coordinate
curves around within the region. With the cascade coordinates [145],
Dirichlet boundary conditions were required to impose periodicity; and the
forcing functions were used to limit, to some degree, the mesh distortiom.
In both the algebraic and the partial differential equation approaches,
however, the periodic mathcing was continuous but not differentiable.
Slope discontinuities across the perfodic boundary segments can be ob-
served from Figure 11 and from the differential equation results_when
the latter 1is stacked in a similar fashion. As a consequence, we must
not only aspecify the boundary geometry and its pointw@se distribution,
but also the direction and the rate for which coordinate curves enter the

boundary. For higher order derivative continuity, even more specifications
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must be added to the 1list. However, in many aﬁplicatiqus firéc derivative
continuity is sufficient since higher order errors can be made small
enough to be dissipated, for example, by finite differences where the
errors are on the order of the truncation error. To obtain first order
derivative continuity at the periodic cascade boundaries with the
differential equation approach, either a higher order system with more
specifiable boundary conditions or else a method to determine suitable
forcing functions would be required. Since coordinate system nonsingularity
depends upon a maximum principle [147] which would probably be lost with a

2

higher order system (e.g., xzy + xy - xy 1s a solution to the biharmonic

equation om [-1,0] % [0,1] which has a minimm at (-1/3, 1/3)), the

determination of suitable forcing functions has the best chance of
success. With a branch cut specified by Dirichlet conditiomns, some
success over a previous case [147] has been obtained by an iteration

on the forcing functions [148]. The iteration was necessary because
the choice of forcing function is coupled to its affect only through
the solution to the system of partial differential equations. By con-
trast to the partial differential equation approach, the multi-surface
method [136] of coordinate generation can be directly used ?o obtain
all of the desired specifications necessary to prescribe branch cuts

to any fixed level of smoothness. Moreover, it is an algebrﬁic approach
which 1s computationally efficient and is multi-dimensional [149]. On
computstion, the efficiency comes abouf since the comstructive procﬁsa is
done as a short anuencerof lower dimensional problems. 1In addiiion,
precise local controls are available for the precise specification of
mesh forms anywhere within the regionm under comsideration. Unlike the

forcing functions of the differential equatiom approach, the local con-

Ty
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trols are applied to a local region outside of which the mesh is not
altered. The difference is that the forcing functions are clustering
controls which can be applied locally but which change the mesh as a

whole due to the ellipticity of the mesh generating system.

The Multi-Surface Transformatiom

When curvilinear coordinator are employed in the numerical solution
of a boundary value problem, constraints must often be placed upon the
coordinates, in addition to the basic requirement that the bounding sur-
faces are coordinate surfaces of one or more coordinate systems. The
locations of the constraints can occur anywhere in the problem domain.

On the boundaries, a particular pointwise distribution may be needed; in
regions near boundaries, a particular coordinate form may be advantageous;
and away from the boundaries, an internal coordinate specification may
also be required. Typicélly, the constraints will arise gither to resolve
regions with large solufion gradients or to cause some simplification in
the problem formulation and solution.

In conjunction with the demand for constraints, the general multi-
surface transformation [136] must be examined. The multi-surface trans-
formation is a method for coordinate generation between an inner bounding
surface ?i and outer bounding surface 3&. To establish a partigularr
distribution of mesh points on each bounding surface, a common parameteri-
zation ¢t is chosen for each surface. This 1is equivalent to a éoordinute
description of the-surfaces which yields the desired surface mesh when the
parametric components of T are given a uniform discretization. With the
parametric descrip;ion, the inner and outer bounding surfaces are denoted

by FI(I) and ;i(:) respectively. At this stage, coordinates could be
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generated along the straight line segments connecting points of common para-
metric value on each bounding surface as in Eq. 208. In continuation, para-
meterized intermediate surfaces FZ(E),...,ﬁk_l(E) are introduced so that
they can be used as controls over thé internal form of the coordinates.
The intermediate surfaces are not coordinated surfaces; but instead, are
gurfaces which are used to establish a vector field that is composed of
tangent vectors to the coordinate curves spanning the coordinate system

to connect bounding surfaces. It 1s also assumed that the collection

of surfaces ‘;1(:), ?é(?),...,?ﬁ(?) is ordered from bounding surface

to bounding surface. An illustration is given in Figure 12. For a fixed
parameter value ?, there 18 a corresponding point on each surface. The
plecewise linear curve obtained by connecting corresponding points 1is
given by the dashed curve in Figure 12. From the figure, it can be ob-
served that the tangent directions determined by the piecewise linear
cur;e are piecewise constants. As ? is varied, the field of tangent
directions obtain their smoothmess only in t. To obtain smoothness in
going from bounding surface to bounding surface, a sufficliently smooth
interpolation must be performed. The result is a smooth vector field of
undetermined magnitude which gives the desired tangential directions for
coordinate curves connecting the bounding surfaces. A unique vector field
of tangents is then obtained by correctly choosing magnitudes so that, on
integration, the bounding surfaces are fit precisely.

In symbols, a vector field tangent to the piecewise-linear curves is

given by

TACGER N INOES XY B (210)

T
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Figure 12. A Piecewise-Linear Curve and its Tangent Field
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between the kth and (k+-1)6t surfaces where k 1s taken to vary (if

N > 2) from the first bounding surface to the final intermediate surface.
These vectors are indicated in Figure 12. The coefficients Ak are scalars
which determine the magnitude of the vectors but not the directions. An
independent variable r is assumed for the spanning direction. A vector
valued function which is discrete in r can now be defined as a map from

<>

T into Vk for a partition r1< eeeS Tyl and for k=1,...,N-1.

For notational simplicity, we will take T, = 0 and -1 ™ 1. A suffi-
ciently smooth vector field V(r,t) is then obtained by a sufficiently

> -+ + >
smooth interpolation V(rk,t) = vk(:). With r as a continuous indepen-

dent vatiable,the r-derivative of the coordinate transformation ?(r,?)

is equal to the interpolant. Specifically,

3; n-1 + -+
5= = V= 1?:‘1 b (O, . (211)

where wk(rj) is unity at k = j and vanishes otherwise. Since the
coordinate transformation must be obtained from an integration in the
r-variable, the interpolant wk must be continuously differentiable up

to an order which is one less than the level of smoothness desired for the
coordinates. The construction of the local controls mentioned above will
rely heavily upon the development of suitably smooth interpolation functioms.
If the integral of Eq. 211 ha; a constant of integration equal to $1(:)

and if the quantities Akwk(r) integrate to unity over the domain

0 <r <1, then a coordinate transformation which nmatches the desired
bounding surfaces is obtained. This also determines the original vector

field since the coefficients must be given by
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1 .
Ak -[fwk(x) dXJ-l ’ (212)
0

for k=1,...,n-1. With this data, the multi-surface transformation

is given by

1 fp hoax

z oo (2, ®-pd]. (213)
"

Br,®) = 2 (D) +
It 1s a simple matter to check that P(O,?) - Pl(z) and P(l,?) - PN(E).
In the latter case the result follows from a telescopic collapse of the
sumnation. On examination of Eq. 212, it is also apparent that each
interpolatory function wk need only be determined up to amy product
with a nonzero real number. The geometric implication is that the vector

field interpolation 1is an interpolation only on vector directions.

Polynomial Transformations

Some global implications of the multi-surface transformation can be
illustrated by a sequence of polynomial examples where the wk are of
degree N -2 for N = 2,3,4. For N =2 the pélynomial of degree
N-2=0 is a constant function. On integration it is found that
Alwl is unity and that the poi}nomial two-gurface transformation of
Eq. 208 is obtained. The coordinate curves consist of a family of straight
line segments connecting the bounding surfaces at common z;values, and a
second family of level (r = constant) curves which are the resuif of a
uniform linear deformation along tﬂe line segments of the first family.
Clearly, the only possible specifications are for positions on each surface,
for angles on each surface, or for a position on one surface and an angle

on the other. Consequently, there are only two degrees of freedom.
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In the case with N = 3, another degree of freedom is added, the poly-
mial degreefis N - 2 = 1, and the partition is given by 0 = il < T, = 1.
Each wi must vanish at tj if 1 # 3 and must be nonzero at T The
simplest such functions are wl =] -1 and wz = v, Upon substitution
into Eq. 213 and after some simplificatiom, the polynomial three-surface

transformation becomes
B, D) = a-n2 @D + 2ea-0E,® + SN (214)

The coordinate curves connecting the bounding surfaces ?1 and 33 are
now biparabolic curves which leave fl in the direction of Fé - §l and
end on $3 from the direction of $3 - ?é. This should be clear on exami-
nation of

P

L .20-0i,®0-F,d1 + 2(F,® - F,®)]

(215)
- 28, - 3,1 + 2, @® - 2B, D+ B,

which is the derivative of Eq. 214 and a special case: of Eq. 211. The
remaining coordinate curves are the level curves of constant r which are
deformations of the boundary curves along the biparabolic curves. An example
of a transformation, generated from Eq. 214, is presented in Figure 13. In
the example, the inner boundary 31 is an ellipse with a major axis of

unity and a minor axis of .25. The outer boundary $3 and the intermediate
curve fé, wvere generated respectively, 2.4 and 1.2, units away from the
elliptical surface in the direction of the outward pointing umit normal vector.

Then the outer boundary 55 was parameterized by its arc length. From the
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Figure 13. Coordinates generated from Eq. 214. Outirardly dirccted curves

are biparabolic arcs; circumferential curves are uniformly

distributed contours.

construction of $2’ it 1s clear that the biparabolic curves must leave
the elliptical surface orthogonally. With the concurrent specification

of positions on each boun&ary, orthogonality on the outer boundary cannot
be obtained. In summary, the boundary specificatiéns of two positions and
one angle i1s the most that can be applied. Alternatively, it would also
be possible to specify two angles but only ome position. The result is
that there are only three degrees of freedom corresponding to N = 3,

The case N = § will lead to yef another degree of freedom. The geo-
metric implication is that the curve which connects the bounding surfaces
can inflect; and thereby, adjust to specifications of both angle and posi-
tion on each bounding surface. This notion i3 consistent with the anti-
cipated result of employing bicubic curves in the r-variable. Within the
structure of ;he general multi-gurface transformation an agsumed partition

0= r, <.r2 < ry - 1 1leads to the functionms *1 - (r-l)(r-rz),
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wz = r(r-1), and w3 = (r- rz)r which are defined up to real multiples.

The polynomial four-surface transformation is then given by

et = a-0i-arE @ + (o +2) -, @

(216a)
+ 2 1-a,1-DIE, @ + g+ DPA-0F, @)
where
2
a; = 3?;':7Ti s (216b)
and
a 2 (216¢)

As in the case with N = 3, it can be observed from Eq. 211 that the
bounding curves are intersected at angles determined by the vectors

FZ - ?1 and FA - By respectively. In this case, as in the previous
case with N = 3, an example of a coordinate system around the same
ellipse and with the same outer boundary is given in Figure 14 where it

can be observed that the expected orthogonality at each bounding

11
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'Figure 14. Coordinates generated from Eq. 216 with Bl = Bz =1/3
in Eq. 223. OQutwardly directed curves are bicubic arcs;
circumferential curves are uniformly distributed contours.

surface is actually attained. This was produced by generating the inter-
mediate curves 32 and $3 with parameterizations that orthogonally
aligned them with the respective bouding curves 3i and 3;. The dis-
placement of each intermediate curve from its corresponding boundary was

chosen to be equal to one sixth of the distance between the boundaries.
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‘Uniform Distributions of Coordinate Surfaces

In both of the elliptical examples there is one common but subtle
point which has some important consequences. It 1s simply that the
coordinates are uniformly distributed between the bounding surfaces.

This observat;on is apparent upon examination of the straight coordinate
curves in Figures 13 and 14. Each is vertical or horizontal and is cut
into equal increments by the crossing coordinate curves.

In the case with N = 3, the intermediate curve was generated to
be halfway between the boundaries. The straight coordinate curves appeared
when, for a given parameter value, the corresponding triple of points was
colinear. Analytically, the r-dependence must vanish from Eq. 215; this
means that the tangent vector to the straight coordinate curves are each
constant vectors. The implication from Eq. 215 is that the intermediate
curve ?2 be halfway between the boundaries. Moreover, upon a substi-

tution of this halfway condition, Eq. 215 becomes
33 -+ +
Se=h@® -5 ® (217)

which is valid for each parametric value T where colinearity is satisfied.
In addition, the transformation Eq. 214 reduces to the form of Eq. 208
except with a subscript 3 rather than 2. By continuity there is a uniform
distribution of coordinate curves within some region containing the straight
line segments. However, from Figure 13 it is clear that uniformity extends
well beyond most regions of reasomable size. For a satisfactory explanation,
further analysis is necessary. Since the uniformity here is measured in the

outward direction from inner,to-outer bounding surfaces, it is reasonable to

R B
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consider projections onto the vector 55 - Fl which 18 aligned with the

appropriate direction. To simplify the analysis, the scaled vector

?.-P
Fm—s 1L (218)

shall be used. Under dot product with the scaled vector, there is a
relative projection in which the original vector $3 -P projects

to unity. The projection of the vector $2 - ii, connecting the inter-
mediate curve with the first bounding curve, is a number C = (?2-31).¥
which is assumed to lie within the unit interval. The implication

from this assumption is that the coordinate curves project to a monotone
function of r. Por each fixed T, the projection of the corresponding

coordinate curve is given by
s(.t) = B -B -, (219)

which is proportional to arc length along 33 - Fi. The judicious choice
of scale in Eq. 218 is now evident since Sp(O,c) = 0 and Sp(l,t) =1,

The r-derivative, which is obtained from Eq. 215 is given by
as
i_p. -
2 3¢ c+r(1-2¢0) . (220)

On integration, with the constant determined by Eq. 219, the result is

Sp = rf2c+r(1-2C)] , (221)
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where the desired uniformity will now be obtained if the quadratic term
vanishes. When this occurs C = 1/2 and Eq. 221 reduces to the uniform
distribution Sp = y, In summary, this choice of C 1is the natural
generalization of the earlier halfway condition for straight lines.

In the case N = 4, we shall proceed directly to an examination of
the relative projected arc length rather than start with the straight
lines. There are now two intermediate surfaces, and two relative pro-

jections along ?; - ?1. These are given by

c, = @B,-Fp % , (222a)
and
c,= @, -1 , (222b)
where, in the same manner as before,
-+
T 3;-P1 (222¢)

TS YE

The projections are assumed to be positive so that Sp is monotone

in r. From here, a short calculation, similar to the previous one, leads

to the expression

2
Sp - t[3Bl+ 3(1- 231- Bz)r + (331+ 332- 2)r}] , (223a)
where
2r2
Bl = 52—_]? Cl s - (223b)

13
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and

2(1-::2)
32 - -:3—(—1—_!2-)—_—_1 C2 - (223c)
A further calculation leads to the relhtionship
S _(r,£) +S_(1-1,f) = 1+ 3(B, - B )r(l ; 224
p(rrt) p( -T,t) ( 1~ P2 r(l-r) , ( )

which is a measure of symmetry in the relative projected arc length of
Eq. 223. Absolute symmetry occurs when Bl = Bz for then the relative
distance Sp(r,:) from the inner boundary Fl is equal to the relative
distance 1 - Sp(l-r,t) from the outer boundary ?g. A sequence of
symmetric examples are given with the elliptic coordinate systems in
Figures 14 - 17. The most notable feature in these figures is that as
B1 = B2 increases from 1/3 to unity, the distribution of coordinate curves,
although symmetric, become éoncent:ated in the center. Cénsequently, it

is clear that symmetry is certaimnly a weaker condition than uniformity.

For uniformity, the requirement is that the quadratic and cubic tefms in

Sp vanish. The implication is equivalent to B, = B, = 1/3. However,
there is still some leeway since there is some freedom of choice in the
selection of T,. Since C1 and 02 are assumed to be positive, it
follows from Eqs. 223b-c that the permissible selections are those for which

1/3 < r, < 2/3. The relative projected distances from intermediate surfaces

are then given by
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11
Ci=3- 6r,

and (225)

i1
2 27 6(T-r))

over the range of ry- An example with r, = 1/2 was given in Figure 14
which was both symmetric and uniform. A further example is given in Figure
18 where a distribution function of the form in Eq. 209 was used in composi-
tion with a uniform transformation to pack points near an airfoil and its

wake. A view of the airfoil region is given in Figure 19.

Figure 15. Coordinates from Eq. 216 with B, = B, = 1/2 in Eq. 223.
The coordinates are symmetric with a mild concentration

of curves in the center.

1
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Figure 16. Coordinates from Eq. 216 with Bl = B, = 2/3 in Eq. 223.
The coordinates are symmetric with a concentration of

curves in the center.

Figure 17. Coordinates from Eq. 216 with B, = B, = 5/6 in Eq. 223.

The coordinates are symmetric with a severe concentration
of curves in the center.
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Figure 18. Coordinate system for a Joukowskil airfoil with a branch cut.

1

Figure 19. A detailed view of the coordinates near the airfoil surface.
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Mesh point distributions on the airfoil (Figures 18 - 19) and on
the elliptical bodies (Figures 13 - 17) were each obtained from geometric
constructions. To concentrate mesh points in regions of higher curvature,
the rate of turning of the unit normal vectors must be controlled. The
method of control used in the examples is to create an auxiliary curve at
a fixed distance in the normal convex direction, to tabulate its arc
length, and to project the arc length tabulation back onto the original
curve along its nérmal directions. The arc length tabulation 1s done
cumulatively for each distinct component of the auxiliary curve as each
purely convex or concave portion of a body 1s traversed in succession.
As the distance is increased to am arbitrarily large value, each component
of the auxiliary curve approaches a circular shape; hence, the rate of
change of the nearly circular arc length (with respect to body arc length)
is approximately proportional to curvature (the sphericéieigdicatrix Il])f;
Consequently, when the distance is varied from zero towards infinity, the
projected parameter varies from a body arc length parameter to a parameter
whose rate of change is proportionai to curvature. An illustration is
given in Figure 20 where a convex portion of the body ?i is shown with
an auxiliary curve at a distance of D units away. A uniform discretiza-
tion of the auxiliary curve arc length is represented by equally spaced
points on the auxiliary curve in Figure 20 and is projected onto the convex
portion where a concentration of points at the higher curvature location

can be observed exﬁlicitly.
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Figure 20. A Geometric Construction of a Curvature Sensitive Parameterization.

Transformations with Precise Local Controls

————

To establish local controls within the multi-surface transformations
(Eq. 213), the interpolants wk must vanish off of suitably small intervals.
To add precision, uniformity controls must also be obtained in a parallel
manner to the polynomial cases. Relative to uniform conditions, which can
now be local conditions, any arbitrary distribution function can be applied
in an undistorted fashion by a direct substitution of the function in place
of r. The simplest local interpolants are the plecewise-linear functions
which are nonvanishing over at most two intervals defined by the partition
0= r Ty < aee < Ty-1 " 1. An illustration is given in Figure 21 where

distinct local interpolants are depicted for each partitiom point T

"ny
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1 ) k-1 Tk e+l

Figure 21. Piecewise Linear Local Interpolants for the Multi-Surface

Transformation.

To simplify the form of the multi-surface transformation (Eq. 213), the
height of each interpolant shall be adjusted so that each interpolant
integrates to unity; hence, the integral normalization is incorporated
into the interpolants and is removed from the explicit statement of the
transformation. With the notation hy = T4l ™ Ty for 1<1<N-1,
the integrals are obtained from triangular areas, and by direct observa-
tion, are given by wl(rl)hllz, wk(rk)(hk_li-hk)lz, and wn_l(ru_l)hn_zlz
in correspondence with the successive illustrations of Figure 21.  When
the integrals are set to unity, the heights become wl(rl) - 2/b1,

wk(rk) - 2/(hk_14-hk), and wN-l(rN-l) - 2/hN_2 in the same order as
above. In correspondence, the explicit form of the normalized interpolants

is given by
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2
h—z(.rz- r) for r; <r<r,
b0 =q !
0 for r, <t <y,
0 ) ~
for Ty <r <7rk_1
0 +2) (r'rk)‘*"—-gr—' for 1 _; <r<r
1 ¥ BBy -1+ By
¢k(t) = ‘ (226)
2 ’r—r)+—2-— for . <r<r
(hy_y + iy "k Pe-1 t k= Wl
0 for TL+l Lr S-rN-l
0 for r; Sr<rg,
Vg1 (0) =
2
T—(r- rN—Z) for Tn-2 <£r< L .
\By-2
In continuation, the corresponding integrals
r
6y =f b, (227)
0

are given by

I N
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1 - —13(1-2--1')2 ) for ry £r«< T,
G - "1
1(0)
1 . for r,iritg,
2 0 for nir<r
(r-1,) 2(r-r.) _
q +k) + et hk41-11 for T sr<n
M1 ¥Phe g By v Byt hy
Gk(r) = 2 (228)
(r - 1) 2(xr, - 1) h
"1 +hh k+ + " for Er<rn,
Beop il Byt B, thy
1 for LIWT R - E-rN-l
0 for rpfr< T-2
G107 = 1 2 : ’
—hz (r- rN—Z) for T2 ST ST,
-2

which, on substitution into the general multi-surface transformation (Eq. 213),

leads to the local form

Br,e) = B (0) + 600 B, 0-F 1 +e, 0E,,®-F, ®], @9
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which is valid on the interval r,<rs LR Since Gi(rk) is unity
for 1 <1< k-1, there was a telescopic collapse of the first k terms
-

in Eq. 213 to yield Pk(t); and since Gi(rk+1) vanishes for
k+2 <1 < N-1, the last N-k-3 terms simply did not appear. The
resultant local form of Eq. 229 can then be used to manipulate the coor-
dinates for the r-values between T, and T+l with only the three

-3
surfaces Pk’ 3k+1 and §£+2 and without any outside influence. To
delineate the curve segments in question, consider the interval endpoint

evaluations

F‘(rkyt) - [l-ck(rk) ]Fk(t) + Gk(rk)Fk"'l(t) »
and (230)

Blrig ) = (1= Gy (D1 (0 + Gy (B0

for each fixed t. Since Gk(rk) and Gk+l(rk+l) are contained in the
unit interval, the evaluations ?(rk,t) and 3(tk+1,t) are observed from
Eq. 230 to respectively lie on the line segments that connect §;+1(t)
with Fk(t) on one side and with 3k+2(t)' on the other. An fllustratiomn
for a fixed t value is given ig Figure 22 where the curve is observed. to

maintain convexity, a property which can be shown analytically.
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?(rk,c)

R XC)
Figure 22. A Local Coordinate Curve Section from Eq. 229 on 1 < r <r ..

To obtain a precise control over the rate of travel along the coor-
dinate curve, the uniformity controls established in the polynomial case
must be applied to the current local forms from either a local or global
perspective. Indeed, the yardsticks for such rate measurements that were
respectively given in Eqs. 218 and 222c can be replaced bf virtually any
other well-aligned vector field. A choice which can be used both locally

and globally is to set

5.8
Tij - ——1—4—1-" 31 - fj " , (231)

for 1> 3. When i =N-1 and j = 1, the yardstick vector for uniformity
measurements reduces to the previous polynomial cases. Moreover, when

i = k+2 and j = k, the rate along the smallest local units can be controlled
with the placement of the local surfaces in the multi-surface construction

for the given range of r. In the same manner as in the polynomial cases, let
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> >

Cis2

be the relative projections of the line segments as 2= 3, j*+l,...,1-1
where the t dependence 1s assumed implicitly for notational convenience.

The relative projected arc length measured from ij is then defined to be
5, (x,t) = Ber,e)-F,©)] * T, (233)

which for r <r <71 4 reduces to

+ ... + cij,k—l + Gk(r)cijk + Gk+1(r)cij,k+l’ (234)

Sp = €133 * Cy,541

by direct application of Eq. 229. For uniformity, Sp must be linear in
r, or equivalently, BSplar must be a constant. By substitution from

Eq. 226, the r-derivative of § » 1n Eq. 234 becomes

25
T = B (OC g + U (BICy 4 g

-(235)
C Cc
2 11k 11,k }
-y + r + constants ,
B | Pyt Bty
which is a constant when
C C

By + By Byt

From Eq. 232, the uniformity condition of Eq. 236 reduces to

Y
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@ -3

@Hl-?k) "ty PP fii o
r,..-T = r -r i (237)
K+l Tk-1 k2" Tk

where the definitions of hl were used. Clearly, uniformity depends upon
the location of surfaces ﬁ; and the choices of partition points. 1In the

case when the partition is uniform, the condition reduces to

@

Hz‘ﬁku* W Ty =0 (238)

which means that the discrete normal from ;#+1 is orthogonal to the
direction of uniformity measurement.

The development of local methods with uniformity conditions extends to
higher levels of derivative continuity than the first order case considered
here. The general theoretical development was performed by the present
author under AFOSR Contract No. F49620-79-C-0132; and computet spplications
of the theory are currently being examined by the present author under
NASA Lewis Research Center Contract NAS3-22117. Reports on both the
theory and the computational applications will appear in [150] and with

more detail in [151].

Solution Adaptive Meshes in the r-Direction

Relative to wniform conditions, distribution functions can be applied
either locally or globally and either by a priori specification (as with
Eq. 209 for attached boundary layers) or by an adaptive mesh technique.
When an ADI method 13 used with coordinatewise impiicit directions, the
governing system of partial differential equations is solved as a sequence

of two-point boundary value problems where the mesh can be adapted to the
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solution along coordinate curves in the r-variable. By adapting only

i{n the r-variable, nonsingularity of the entire transformation comes
directly from the monotonicity of the r-distribution for each ?, given
that the fixed underlying multi-surface transformation with uniform
conditions is nonsingular. An example of adaptation in the r-directiom
(with the two-surface coordinates of Eq. 208) is given in the study of
Yanenko et al. [ 82]. For two-point boundary value problems, adaptive
techniques which preserve monotonicity have been based upon the minimi-
zation of truncation er;or ([751, [ 771, [ 79 1) and upon geometric or
analytic properties of the solution ([76 1, [78]). To maintainm, con-
sistency in directions other than r, only methods which do not add or
substract mesh points can be considered. In addition, the adaptive tech-
niques for two-point bound;ty value problems are generally implicit.

The result is that an auxiliary equation or equations must be added to

an existing system in order to obtain the benefits of a better mesh dis-
tribution. The ﬁalance then is between a mesh distribution which causes
more rapid convergence and the amount of work necessary to obtain it rela-
tive to the same level of convergeance with an a priori specification or a
more dense mesh. With time-dependent problems, an explicit mesh adaption
{g an attractive alternative since techniques which closely follow solu-
tion properties can be developed without the creation of a possibly more
complicated problem than was originally posed. Such an explicit construc-
tion can be entirely separated from the solution process by spatially
lagging the meshAadaptation just enough to not influence the solution pro-
cess on the ch;rent coordinate curve. For second order central difference

procedures, the amount of lagging is just two coordinate curves behind the
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current one. As a consequence, an extra line of solution data would
have to be stored for the explicit adaptive process. To formulate an
adaptive technique that is virtually independent of the nume;ical method
used, a geometric technique will be outlined. Consider the velocity
profile in Figure 23 which is taken through a separation-bubble which
could occur, for exémple, when a shock wave impinges upon an attached

boundary layer.

r Velocity Profile

Auxiliary Curve

Auxiliary Curve

Solid Wall

Figure 23. Adaptive mesh from the arc length of an auxiliary curve
generated D units from a velocity profile.

~

If an equal arc length partition of the velocity profile were to be projected

onto the r-direction axis (e.g., f& - 31), then the resultant mesh in r

would be adequate for the resolution of the velocity gradiemts, but not for
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velocity profile curvature which is a measure of the spatial rate of

change in profile shape. To also include thé cruvature effects, an
auxiliary curve is constructed in the same fashion that was done for
pointwise distributions on one-dimensional surfaces and illustrated in
Figure 20. When the auxiliary curve is taken D units away in the con-
vex normal direction, the projectién of its arc length parameters along

the normals gives us a velocity profile parameterizatiom which varies

from profile arc length to profile curvature concentrations as D varies
from O to arbitrarily large values. Since the velocity profile in Figure
23 has an inflection point where convexity properties change, the auxiliary
curve appears with two components. In the auxiliary curve arc length tabu-
lation, the jump between components at the inflection point is not added

to the arc length, but rather the arc length sum is computed up the inflec-
tion on the first component and is then continued by adding arc length
staring from the inflection on the second compoment. In the figure, an
equal arc length partition on the auxiliary curve is depicted by a sequence
of dots where inflection point treatment can be readily observed. As in
the case with surface parameterizations, the equally spaced dots on the
auxiliary curve are projected onto the profile to yield a curvature sensi-
tive distribution. When the profile distribution is projected orthogonally
onto the r-direction axis, we obtain a distributioﬁ R(r,?) which distri-
butes mesh points to resolve regions where the velocity gradients (slopes)
are large and where the gradients are rapidly changing (curvature). In the
figure, the final images of the auxiliary curve partition points are dis-
played as a sequence of dots along the r-axis. Due to the geometric con-

struction based upon arc length and projections, the distribution function

e
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R(t,?) is always strictly monotone; hence, when r 13 replaced by
R(t,z) in a fixed multi-surface transformation, nonsingularity will
not be lost. Moreover, when uniformity in the r-variable is imposed
for the fixed transformation, the distribution is inserted without
distortion which is absolutely necessary in such a proceas(' In appli-
cations of such a geometric technique, some consideration has to be
given to the treatment of local oscillations (wiggles) in a numerical
solution. Some filtering or smoothing must clearly be applied when
needed. To compare the difference between implicit and explicit solu-
tion adaptation, Ablow and Schecter [76 ] have examined two point
boundary value problems with both an arc length and a curvature control
to obtain a rather complex implicit relationship. With more genmerality
in the implicit approach, White [ 78 ] has developed a method based on

arbitrary monitor functions.
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